CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
基本信息
- 批准号:10612169
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAstrocytesBioenergeticsBrainBrain regionCell physiologyCellsCellular MorphologyChemical SynapseCommunicationComputer ModelsDataDevelopmentDiseaseDissectionElectrophysiology (science)EventExcitatory SynapseExtracellular SpaceFeedbackFloridaFluorescence MicroscopyFutureGerman populationGermanyGiant CellsGlutamate TransporterGlutamatesHeterogeneityHippocampusHomeostasisImpairmentIndividualIon TransportIschemic StrokeLinkMeasuresModelingMolecularMonitorMorphologyMusN-Methyl-D-Aspartate ReceptorsNeocortexNeuronal PlasticityNeuronsPathway interactionsPharmacologyPlayPreparationProcessProductionPropertyProtonsResearchResearch ProposalsRoleSideSignal TransductionSiteSpecificityStructureSynapsesSynaptic CleftSynaptic TransmissionTechniquesTestingTimeTissuesUniversitiesViralWorkdensitydesigndriving forceexcitotoxicityexperimental studyextracellularfluorescence imagingfluorescence lifetime imagingimage processinginsightmulti-scale modelingmultiphoton imagingneocorticalnervous system disorderneuronal cell bodyneuronal excitabilityneurotransmissionnovelnovel strategiespharmacologicpostsynapticpredictive modelingpresynapticspatiotemporalstoichiometrysynaptic functiontooltransmission processuptake
项目摘要
CRCNS US-German Research Proposal: Quantitative and computational dissection of
glutamatergic crosstalk at tripartite synapses
(1) Christine R Rose, Heinrich Heine University, Düsseldorf, Germany
(2) Christian Henneberger, University of Bonn, Germany
(3) Ghanim Ullah, University of South Florida, Tampa, FL, USA
Project Description
1 Introduction and Background
Transmission at chemical synapses is the central mechanism by which information is
transferred between neurons. Synaptic connections such as glutamatergic excitatory
synapses are often perceived and modeled as point-to-point connections. However, there is
substantial evidence that crosstalk between various glutamatergic synapses can occur when
the presynaptically released glutamate is sensed not only by its direct postsynaptic partner
but also by nearby synapses of the same and other neurons [4]. Notably, this phenomenon
termed “glutamate spillover” not only defines the input-specificity of a given synaptic
connection and its crosstalk to neighboring synapses, but is also involved in and controlled by
activity-dependent plasticity [1, 7, 8].
How easily glutamate escapes from its release site and how far it spreads into the tissue
depends on the morphological and molecular properties of the extracellular space (ECS) as
well as on the efficacy of glutamate clearance, which primarily depends on astrocytic uptake
[11, 12]. We and others have shown that the efficacy of perisynaptic glutamate uptake by
astrocytes displays a remarkable heterogeneity between brain regions and, importantly, can
vary drastically from one synapse to the next within a brain region [3, 7, 8]. This is in part
because the morphological coverage of synapses by perisynaptic astrocyte processes (PAPs)
can differ strongly between individual synapses [14]. Moreover, the Henneberger lab has
recently shown that higher synaptic coverage by PAPs correlates with a higher local efficacy
of glutamate uptake [3]. We have also demonstrated that in addition to being heterogeneous,
astrocytic glutamate uptake and PAPs morphology both are controlled by neuronal plasticity
[1]. Moreover, glutamate uptake is governed by the transporters’ stoichiometry, importing one
glutamate molecule into the astrocyte by using the energy gained from co-transporting three
Na+ and one proton down the electrochemical gradients, whilst also exporting one K+ [12].
While the inwardly-directed Na+ gradient is the main driving force for glutamate uptake, recent
work by Rose lab and others have shown that glutamatergic activity causes local or global Na+
transients in astrocytes ([Na+]A) [15]. In the mouse hippocampus, astrocytic Na+ signals in fact
arise predominately due to the activity of glutamate transporters themselves, degrading the
Na+ gradient and thereby transiently weakening uptake capacity in a negative feedback-loop
[15-17]. In the neocortex, glutamatergic synaptic activity in addition results in prominent Na+
influx through NMDA receptors, boosting astrocyte Na+ gradients [18].
Thus, it is increasingly appreciated that astrocytic glutamate uptake is neither static nor
uniform. First, it is functionally dependent on the gradients of the transported ions which
dynamically change with synaptic transmission [12]. Second, it is plastic because structural
remodeling of PAPs on time scales of minutes profoundly alters perisynaptic glutamate spread
[1]. Therefore, the emerging hypothesis is that the degree of glutamate spillover and,
therefore, synaptic crosstalk in most brain regions are dynamically regulated and controlled at
the level of the astrocytes. Furthermore, since a single astrocyte can contact thousands of
synapses of various neurons, it has the potential to locally control the crosstalk of many
synapses. In such a scenario, an astrocyte, or a subcellular domain of it, can coordinate
crosstalk between many glutamatergic synapses on different neurons. Thereby, astrocytes
and their PAPs set the spatial fidelity of glutamatergic synaptic transmission and as a
consequence profoundly control neuronal signal exchange.
So far, these important hypotheses remain largely untested. We will fill this gap by
combining quantitative fluorescence imaging, astrocytic manipulations, and predictive
computer modelling. This will be accomplished by investigating perisynaptic astrocytic Na+
gradients, the main driving force of glutamate uptake, and local mechanisms controlling them
1
CRCNS 美德研究提案:定量和计算剖析
三方突触的谷氨酸能串扰
(1) Christine R Rose,海因里希海涅大学,杜塞尔多夫,德国
(2) Christian Henneberger,德国波恩大学
(3) Ghanim Ullah,南佛罗里达大学,美国佛罗里达州坦帕
项目描述
1 简介和背景
化学突触的传递是信息传递的核心机制
神经元之间转移的连接,例如谷氨酸兴奋性。
突触通常被视为点对点连接并建模为点对点连接。
大量证据表明,当
突触前释放的谷氨酸不仅被其直接的突触后伙伴感知
值得注意的是,这种现象也受到相同神经元和其他神经元附近突触的影响。
术语“谷氨酸溢出”不仅定义了给定突触的输入特异性
连接及其与邻近突触的串扰,但也参与并受其控制
活动依赖性可塑性 [1,7,8]。
谷氨酸从其释放位点逃逸的容易程度以及它扩散到组织中的距离
取决于细胞外空间 (ECS) 的形态和分子特性:
以及谷氨酸清除的功效,这主要取决于星形胶质细胞的摄取
[11, 12] 我们和其他人已经证明突触周围谷氨酸摄取的功效。
星形胶质细胞在大脑区域之间表现出显着的异质性,重要的是,可以
大脑区域内的一个突触与下一个突触之间存在显着差异 [3,7,8]。
因为突触的形态被突触周围星形胶质细胞突起(PAP)覆盖
各个突触之间可能存在很大差异[14]。
最近表明,PAP 较高的突触覆盖率与较高的局部功效相关
我们还证明,除了异质性之外,
星形胶质细胞谷氨酸摄取和 PAP 形态均受神经元可塑性控制
[1] 此外,谷氨酸的吸收受转运蛋白的化学计量控制,导入一个。
利用共同运输三者所获得的能量将谷氨酸分子转移到星形胶质细胞中
Na+ 和一个质子沿着电化学梯度下降,同时还输出一个 K+ [12]。
虽然向内的 Na+ 梯度是谷氨酸吸收的主要驱动力,但最近
Rose 实验室和其他人的工作表明,谷氨酸活性会导致局部或整体 Na+
星形胶质细胞中的瞬变 ([Na+]A) [15] 实际上,在小鼠海马中,星形胶质细胞发出 Na+ 信号。
主要是由于谷氨酸转运蛋白本身的活性,降解了
Na+ 梯度,从而暂时削弱负反馈回路中的吸收能力
[15-17] 在新皮质中,谷氨酸能突触活动另外导致显着的Na+。
通过 NMDA 受体流入,提高星形胶质细胞 Na+ 梯度 [18]。
因此,人们越来越认识到星形胶质细胞的谷氨酸摄取既不是静态的也不是静态的。
首先,它在功能上取决于传输离子的梯度。
随着突触传递而动态变化[12],其次,它是可塑的,因为结构。
PAP 在分钟时间尺度上的重塑深刻地改变了突触周围谷氨酸的扩散
[1] 因此,新出现的假设是谷氨酸溢出的程度,
因此,大多数大脑区域的突触串扰是动态调节和控制的
此外,由于单个星形胶质细胞可以接触数千个。
各种神经元的突触,它有潜力局部控制许多神经元的串扰
在这种情况下,星形胶质细胞或其亚细胞域可以协调。
不同神经元上的许多谷氨酸突触之间的串扰,从而形成星形胶质细胞。
他们的 PAP 设定了谷氨酸能突触传递的空间保真度,并作为
后果深刻地控制着神经信号交换。
到目前为止,这些重要的假设在很大程度上尚未得到检验,我们将通过以下方式填补这一空白。
结合定量荧光成像、星形胶质细胞操作和预测
这将通过研究突触周围星形细胞 Na+ 来完成。
梯度,谷氨酸吸收的主要驱动力,以及控制它们的局部机制
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghanim Ullah其他文献
Ghanim Ullah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
星形胶质细胞多巴胺D1受体调控焦虑样行为的机制研究
- 批准号:32300968
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超强子Linrep通过PTBP1调控星形胶质细胞Edn1可变剪接在HIBD血脑屏障损伤的作用和机制研究
- 批准号:82371714
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
星形胶质细胞源外泌体经由MCT2阻断神经元-胶质细胞代谢偶联在围绝经期抑郁症中的作用机制研究
- 批准号:82373585
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
- 批准号:32371037
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
效应记忆型CD8+T细胞调控星形胶质细胞异质性在抑郁症中的作用及机制研究
- 批准号:82373857
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Sex-based differences of a high fat diet in Alzheimer's disease (AD): Can nilotinib reverse bioenergetic and neuropathological deficits?
阿尔茨海默病 (AD) 中高脂肪饮食的性别差异:尼罗替尼能否逆转生物能量和神经病理学缺陷?
- 批准号:
10629882 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
- 批准号:
10901025 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Interactions between Mitochondria, ER, and Amyloid
线粒体、ER 和淀粉样蛋白之间的相互作用
- 批准号:
10751909 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别: