Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
基本信息
- 批准号:10598739
- 负责人:
- 金额:$ 20.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-14 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVACE2Agar Gel ElectrophoresisAnimal ModelAntigensAntiviral TherapyAreaAtomic Force MicroscopyAvidityBindingBiological AssayCOVID-19Cell modelCellsCharacteristicsCollectionDNADetectionDevelopmentDoseEffectivenessEngineeringEpithelial CellsEpitopesEtiologyExhibitsGoalsHIVHumanIn VitroInfectionInfluenzaKnock-in MouseKnowledgeLungMechanicsMedicineMembrane GlycoproteinsMembrane ProteinsMolecularMolecular GeneticsNanostructuresNanotechnologyPatternPositioning AttributePreventivePricePropertyProteinsResistanceRouteSARS-CoV-2 B.1.1.529SARS-CoV-2 B.1.617.2SARS-CoV-2 P.1SARS-CoV-2 infectionSARS-CoV-2 inhibitorSARS-CoV-2 spike proteinSARS-CoV-2 variantSafetySensitivity and SpecificitySeriesShapesStructureSurfaceTechnologyTestingTherapeuticToxic effectUnited States National Institutes of HealthValidationViralVirionVirusVirus DiseasesWorkanti-viral efficacyantiviral drug developmentaptamerbiomaterial compatibilitycostcost estimatecytotoxiccytotoxicitydesigndrug developmentflexibilityfuture epidemicgenetic technologyin vivoinnovationinnovative technologiesmimicrymouse modelnanonanobodiesnanoscalepandemic diseaseparticlepathogenpost SARS-CoV-2 infectionprecision medicinepreventprogramsprophylacticprototypereceptorreceptor bindingscreeningtransmission processvariants of concernviral entry inhibitor
项目摘要
Project Summary/Abstract
SARS-CoV-2, the etiological pathogen of COVID-19, has resulted in a pandemic. There remains an urgent
need for innovative technologies which facilitate the development of affordable antiviral precision medicine.
SARS-CoV-2 is an enveloped virus, and the structure of the trimeric spike protein clusters on the virion has been
solved. To develop innovative, affordable, and biocompatible antiviral candidates against SARS-CoV-2 infection
and transmission, we exploited the structural characteristics of viral surface proteins that can be matched at
nanoscale precision by engineered DNA nanostructure platforms. Based on the structure of the SARS-CoV-2
virion and surface spike trimer layout, we have synthesized a designer DNA nanostructure (DDN) that takes the
form of a macromolecular ‘net’ whose vertices are a precise mechanical match to the spacing and positioning of
the spike protein matrix displayed on the virus outer surface. We hypothesize that the structural properties and
the layout patterns of SARS-CoV-2 spike proteins can be exploited to design DDNs with nanoscale precision
which are capable of matching and capturing intact SARS-CoV-2 virions with ultrahigh binding avidity and
selectivity, thereby blocking SARS-CoV-2 infection. We have screened and found DNA aptamers and
nanobodies that are specific for the spike receptor-binding domain (RBD). These spike binders can be
incorporated into the ‘knots’ of the DDN net to allow the simultaneous binding of multiple DNA aptamers with
multiple spikes on the viral surface in a polyvalent, pattern-matching fashion. The DNA ‘net’-aptamer prototype
construct has afforded dramatic increase in SARS-CoV-2 binding avidity. This construct can work as a decoy to
block viral entry into host cells and is about 1,000-fold more potent than the free aptamer. In this R21 proposal,
we aim to extend this technology to enable the incorporation of multiple types of probes against spike RBD and
to validate the safety and effectiveness of DDNs in antiviral therapy in vitro and in vivo. We propose two specific
aims: to (1) design, synthesize, validate, and further optimize the virus-capturing avidity against various SARS-
CoV-2 variants of concern (VOCs); and (2) to determine the antiviral potency and cytotoxicity of the designed
DDNs during SARS-CoV-2 infections in vitro in human lung epithelial cells and in vivo in human ACE2-knockin
mice. Completion of this work will help us define the antiviral potency and safety of the DNA nanostructures that
are designed to perfectly match epitope layouts on the viral surface to capture and wrap live viruses. The
estimated cost of DDN treatment is approximately $10/dose (a price that likely decreases at large-scale
synthesis), making it an affordable therapy. This DDN platform may further contribute to the rapid development
of antiviral precision medicine against emerging SARS-CoV-2 VOCs, as well as other enveloped viruses such
as influenza and HIV.
项目概要/摘要
SARS-CoV-2(COVID-19 的病原体)已导致大流行,目前仍处于紧急状态。
需要创新技术来促进开发负担得起的抗病毒精准医学。
SARS-CoV-2是一种有包膜病毒,病毒粒子上的三聚体刺突蛋白簇的结构已被研究
开发针对 SARS-CoV-2 感染的创新、经济实惠且生物相容的抗病毒候选药物。
和传播,我们利用了病毒表面蛋白的结构特征,可以在
基于 SARS-CoV-2 结构的工程 DNA 纳米结构平台实现纳米级精度。
病毒粒子和表面刺突三聚体布局,我们合成了一种设计DNA纳米结构(DDN),它采用
高分子“网”的形式,其顶点与分子的间距和定位精确机械匹配
显示在病毒外表面上的刺突蛋白基质。
SARS-CoV-2刺突蛋白的布局模式可用于设计纳米级精度的DDN
能够以超高的结合亲合力匹配和捕获完整的 SARS-CoV-2 病毒粒子,
选择性,从而阻断SARS-CoV-2感染,我们筛选并发现了DNA适体并
这些尖峰结合物可以是对尖峰受体结合结构域(RBD)具有特异性的纳米抗体。
整合到 DDN 网络的“结”中,以允许多个 DNA 适体同时结合
以多价、模式匹配的方式在病毒表面形成多个尖峰。
该构建体显着增加了 SARS-CoV-2 的结合亲和力。该构建体可以作为诱饵。
阻止病毒进入宿主细胞,其效力比游离适体强约 1,000 倍。
我们的目标是扩展这项技术,以便能够结合多种类型的探针来对抗尖峰 RBD 和
为了验证 DDN 在体外和体内抗病毒治疗中的安全性和有效性,我们提出了两种具体方案。
目标:(1)设计、合成、验证并进一步优化针对各种 SARS 的病毒捕获亲和力
关注的 CoV-2 变体 (VOC);以及 (2) 确定设计的抗病毒效力和细胞毒性
人肺上皮细胞体外 SARS-CoV-2 感染期间的 DDN 以及人 ACE2 敲入体内的 DDN
完成这项工作将有助于我们确定 DNA 纳米结构的抗病毒效力和安全性。
旨在完美匹配病毒表面的表位布局,以捕获和包裹活病毒。
DDN 治疗的估计费用约为 10 美元/剂(该价格可能会大规模下降)
合成),使其成为一种负担得起的疗法,该 DDN 平台可能会进一步促进快速发展。
针对新出现的 SARS-CoV-2 VOC 以及其他包膜病毒的抗病毒精准医学
如流感和艾滋病毒。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weishan Huang其他文献
Weishan Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weishan Huang', 18)}}的其他基金
Markers and regulation of regulatory CD8+ T cells during influenza-induced lung immunopathology
流感诱导的肺免疫病理过程中调节性 CD8 T 细胞的标志物和调控
- 批准号:
10437918 - 财政年份:2021
- 资助金额:
$ 20.31万 - 项目类别:
Markers and regulation of regulatory CD8+ T cells during influenza-induced lung immunopathology
流感诱导的肺免疫病理过程中调节性 CD8 T 细胞的标志物和调控
- 批准号:
10299358 - 财政年份:2021
- 资助金额:
$ 20.31万 - 项目类别:
Markers and regulation of regulatory CD8+ T cells during influenza-induced lung immunopathology
流感诱导的肺免疫病理过程中调节性 CD8 T 细胞的标志物和调控
- 批准号:
10655481 - 财政年份:2021
- 资助金额:
$ 20.31万 - 项目类别:
TCR signaling in IL-10 production by CD8+ T cells during influenza-induced lung immunopathology
流感诱导的肺部免疫病理过程中 CD8 T 细胞产生 IL-10 的 TCR 信号转导
- 批准号:
10078640 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
Heterogeneity and molecular signatures of therapeutic T cells in allergic airwayinflammation.
过敏性气道炎症治疗性 T 细胞的异质性和分子特征。
- 批准号:
10066089 - 财政年份:2019
- 资助金额:
$ 20.31万 - 项目类别:
相似国自然基金
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
新型コロナウイルス感染阻害能を有する抗ACE2抗体の阻害機構に関する構造基盤解明
阐明具有抑制新型冠状病毒感染能力的抗ACE2抗体抑制机制的结构基础
- 批准号:
24K09338 - 财政年份:2024
- 资助金额:
$ 20.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
- 批准号:
10696610 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Mechanistic modeling of the innate immune responses of the human lung to understand the inter-individual heterogeneity of COVID-19 pneumonia
人肺先天免疫反应的机制模型,以了解 COVID-19 肺炎的个体间异质性
- 批准号:
10728396 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Megakaryocyte regulation by the gut microbiome
肠道微生物组对巨核细胞的调节
- 批准号:
10720081 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别: