Approximating Mechanisms of Suicide Risk to Innovate Interventions for Mid-to-Late-Life Veterans
近似自杀风险机制以创新中晚年退伍军人的干预措施
基本信息
- 批准号:10590282
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AwardClinicalClinical ResearchClinical TrialsComplementComplexComputational TechniqueComputer AnalysisDataData AnalysesData LinkagesData SetElderlyEnsureEthicsEtiologyFocus GroupsFrequenciesGoalsInpatientsIntentionInterventionIntervention TrialInvestigational TherapiesK-Series Research Career ProgramsKnowledgeLinkLongitudinal cohortMentorsMethodsModelingMorbidity - disease rateNational Institute of Mental HealthOccupationsOutcomeOutpatientsPatientsPatternPharmaceutical PreparationsPhasePositioning AttributePost-Traumatic Stress DisordersPredictive AnalyticsPrevention programPrevention strategyPrognostic FactorProtocols documentationProviderPsychiatristResearchResearch MethodologyResearch PersonnelResearch PriorityResearch Project GrantsRisk ReductionRoleScientistSuicideSuicide attemptSuicide preventionTechniquesTestingTrainingTraining ActivityVeteransVulnerable Populationsagedcareercohortcostdemographicsdesigneffective interventionempowermentimprovedinnovationinsightintervention programlarge scale datalarge-scale databaselenslongitudinal datasetmachine learning predictionmilitary veteranprogramsreducing suicidescreeningsuicidal morbiditysuicidal risk
项目摘要
The current 2-year career development award (CDA-1) proposal is designed to prepare Dr. Michael
Ruderman, a VA Psychiatrist with foundational knowledge of advanced research methods, for a career in VA
conducting research as a psychiatrist scientist who will advance innovation in suicide prevention and
intervention strategies—identifying and targeting causal mechanisms for suicide that are amenable for
intervention. Dr. Ruderman will accomplish this goal through the pursuit and completion of training activities,
support from an expert mentoring team, and completion of a research project aimed at bridging the gap
between causal inference research methods and clinical knowledge to inform suicide interventions. The CDA-1
project will ultimately generate pilot information about causal factors for suicide risk with refinement based on
expert elicitation for Dr. Ruderman’s submission of a CDA-2 application.
Dr. Ruderman’s proposed CDA-1 project supports VA’s top clinical priority—Preventing suicide.
Moreover, this proposal is directly aligned with VA’s mandate to prioritize research that can help develop
targeted suicide interventions by finding out why certain Veterans are at risk of suicide. Despite VA’s strong
predictive analytics for stratifying Veterans at risk for suicide, the mechanisms leading to suicide are poorly
understood. This lack of knowledge has impeded the innovation of targeted and effective interventions
available. National suicide research agendas urge investigators to leverage existing data and determine
potential causal targets that could define or develop effective suicide interventions. However, few large-scale
databases exist that would have the capacity to harmonize and link to the right breadth and depth of
information to successfully detect causal targets for a rare (yet, profound) outcome like suicide. Thus, this
CDA-1 proposed research leverages Dr. Amy Byers’ (primary mentor on the CDA-1) CSR&D Merit award
project (CX001119), which uniquely formed a longitudinal cohort of 5 million Veterans aged 50 years and older
including, currently, nearly 12,000 suicide deaths and data on demographics, inpatient, outpatient,
medications, labs, and morbidity. The CDA-1 project will expand upon Dr. Byers’ research on late-life suicide
risk looking at prognostic factors and fill a significant gap in the field, causal inference, complementing
predictive analytics in suicide risk research at VA. Furthermore, focusing on mid-to-late-life Veterans is ideal
because it supplies targeted information in this understudied and highly vulnerable group, who have the
highest number of lives lost to suicide (~70% of all Veteran suicide deaths), as well as make up over 70% of
the Veteran population.
Discovering candidates from large secondary data requires an approach that can extract causal
information efficiently while also prioritizing likelihood of clinical utility. Data-driven causal methods have the
potential to do this, but only if such methods are tightly linked with existing clinical and other scientific
knowledge. Therefore, we propose an approach where we: first (Aim 1) utilize causal discovery techniques to
identify preliminary causal candidates for suicide in Veterans aged 50 years and older; and, then, second (Aim
2) develop a protocol to elicit clinical expertise on potential mechanisms of suicide, which will provide
necessary pilot information for a CDA-2 application. Such a biphasic approach ensures expert knowledge is
integrated with computational analysis to maximize likelihood of clinical utility for suicide prevention. To this
end, the aims and training of this 2-year CDA-1 will prepare Dr. Michael Ruderman to submit a CDA-2
application—clearing a path toward an independent research program as a computational psychiatrist, bridging
methods to institute actionable change, reducing suicide risk for Veterans, and empowering their providers.
当前的 2 年职业发展奖 (CDA-1) 提案旨在帮助迈克尔博士做好准备
Ruderman,退伍军人管理局精神病学家,拥有先进研究方法的基础知识,适合在退伍军人事务部工作
作为隐喻科学家进行研究,推动自杀预防和预防方面的创新
干预策略——识别并针对自杀的因果机制
鲁德曼博士将通过追求和完成培训活动来实现这一目标,
专家指导团队的支持,并完成旨在缩小差距的研究项目
CDA-1 因果推理研究方法和临床知识之间的关系,为自杀干预提供信息。
项目最终将生成有关自杀风险因果因素的试点信息,并根据
Ruderman 博士提交 CDA-2 申请的专家诱导。
Ruderman 博士提出的 CDA-1 项目支持 VA 的临床首要任务——预防自杀。
此外,该提案与 VA 的任务直接一致,即优先考虑有助于开发的研究
尽管退伍军人事务部的力量很强,但仍通过找出某些退伍军人面临自杀风险的原因来进行有针对性的自杀干预。
对有自杀风险的退伍军人进行分层的预测分析,导致自杀的机制很差
这种知识的缺乏阻碍了有针对性的有效干预措施的创新。
国家自杀研究议程敦促调查人员利用现有数据并确定。
可以定义或制定有效的自杀干预措施的潜在因果目标然而,很少有大规模的自杀干预措施。
存在的数据库将有能力协调和链接到正确的广度和深度
成功检测自杀等罕见(但影响深远)结果的因果目标的信息。
CDA-1 拟议的研究利用了 Amy Byers 博士(CDA-1 的主要导师)CSR&D 优异奖
项目 (CX001119),该项目独特地形成了 500 万 50 岁及以上退伍军人的纵向队列
目前包括近 12,000 例自杀死亡事件以及人口统计数据、住院患者、门诊患者、
CDA-1 项目将扩展拜尔斯博士对晚年自杀的研究。
风险研究预后因素并填补该领域的重大空白,因果推断,补充
此外,针对中晚年退伍军人的分析是理想的选择。
因为它为这个未被充分研究和高度脆弱的群体提供了有针对性的信息,他们拥有
自杀造成的死亡人数最多(约占所有退伍军人自杀死亡人数的 70%),并且占退伍军人自杀死亡人数的 70% 以上
退伍军人人口。
从大量二手数据中发现候选者需要一种能够提取因果关系的方法
有效地提供信息,同时还优先考虑数据驱动的因果方法的可能性。
有潜力做到这一点,但前提是这些方法与现有的临床和其他科学紧密联系
因此,我们提出了一种方法:首先(目标 1)利用因果发现技术来
确定 50 岁及以上退伍军人自杀的初步候选因素,然后是第二个(目标;
2)制定一项方案,以获取有关自杀潜在机制的临床专业知识,这将提供
CDA-2 应用程序所需的试点信息这种双相方法可确保专家知识。
与计算分析相结合,最大限度地提高自杀预防的临床实用性。
最后,为期 2 年的 CDA-1 的目标和培训将为 Michael Ruderman 博士提交 CDA-2 做好准备
应用程序——为计算心理学、桥梁等独立研究项目扫清道路
采取可行的变革的方法,降低退伍军人的自杀风险,并赋予他们的提供者权力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Alan Ruderman其他文献
Michael Alan Ruderman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于脑灰-白质图卷积模型的SCD影像标记物提取及临床应用研究
- 批准号:62376150
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
甲硫氨酸代谢调控核仁功能促进高危型肝母细胞瘤恶性演进的机制及临床价值研究
- 批准号:82302617
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肝细胞肝癌Glypican 3特异性定点标记免疫PET显像探针的创制与临床前研究
- 批准号:82302236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肝癌门静脉癌栓临床需求导向的精氨酸基口服纳米药物的设计、合成及应用研究
- 批准号:22375033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
B7-H3在分化型甲状腺癌颈淋巴结转移个体化治疗中的临床应用与分子研究
- 批准号:82373439
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
- 批准号:
10752046 - 财政年份:2024
- 资助金额:
-- - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
-- - 项目类别: