Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
基本信息
- 批准号:10590413
- 负责人:
- 金额:$ 80.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlabamaAlgorithmsAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs Disease PathwayAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericanCaringCause of DeathCharacteristicsClinicalClinical MedicineClinical ResearchCognitiveCollectionConsumptionDataData ScienceDegenerative DisorderDementiaDisease OutcomeDisease ProgressionDisparityElectronic Health RecordFaceFloridaFutureGoalsGrainHealthHeterogeneityIndividualKnowledgeMachine LearningMediationMethodologyMethodsModelingNatural Language ProcessingNew YorkOnset of illnessOutcomePathway interactionsPatientsPatternPhenotypePopulationPreventionProliferatingResearchResearch PriorityRisk FactorsSeveritiesSeverity of illnessSex DifferencesSexual and Gender MinoritiesStandardizationStructureSubgroupSyndromeTestingTimeage relatedbilling dataclinical careclinical riskcohortcomputable phenotypescostdisease disparityethnic minorityfederated learninggender differencegender minority groupgender minority healthmachine learning methodmild cognitive impairmentminority disparityneighborhood safetynovelpatient orientedphenotyping algorithmpragmatic trialracial minorityrisk stratificationrural underservedsocial cohesionsocial health determinantssocioeconomic disadvantagesuccesstooltranslational impactvirtual
项目摘要
ABSTRACT
Sexual and gender minorities (SGM) face unique health issues, but studies on SGM health are scarce. In
particular, limited data are available among SGM individuals on age-related conditions such as Alzheimer’s
disease (AD) and related dementias. AD is a fatal degenerative disease with a diverse range of risk factors,
ranging from clinical characteristics to social determinants of health (SDoH). AD patients often progress from
cognitively unimpaired to (possible) mild cognitive impairment (MCI), followed by increasing severity of
dementia with AD clinical syndrome. Nevertheless, evidence suggests there exists heterogeneity in the
progression to AD through multiple intermediate stages. Characterizing the different AD progression pathways
and the associated risk factors is crucial for risk stratification and prevention. On the other hand, the
proliferation of large clinical research networks (CRNs) with real-world data (RWD), including electronic health
records (EHRs), claims, and billing data among others, offers opportunities for generating real-world evidence
(RWE) that will have direct translational impacts on AD prevention and care in the SGM populations.
Nevertheless, there are a number of key research and methodological gaps in using RWD for studying AD in
SGM, including the lack of (1) validated computable phenotypes (CP) and natural language processing (NLP)
tools that can accurately define the SGM populations and extract key patient characteristics and outcomes
(e.g., MoCA scores to determine severity), (2) consideration of the heterogeneity in AD and its progression
pathways, and (3) consideration of AD disparities in SGM populations, especially structured on both individual-
and contextual-level SDoH. Responding to NOT-AG-21-050, we propose to analyze large collections of RWD
in the OneFlorida+ and INSIGHT networks, two CRNs contributing to the national Patient-Centered Clinical
Research Network (PCORnet), to: (1) create real-world longitudinal SGM and AD cohorts that can be followed
by virtue of routine clinical care, (2) model the heterogeneity in AD progression with novel federated machine
learning methods, and (3) examine SGM disparities in AD outcomes (i.e., onset and progression pathways)
and in the causal paths via which AD clinical risk factors and SDoH impact these AD outcomes. Our project is
novel and will have direct translational impact as it provides concrete RWE to fill the knowledge gaps by
examining whether AD disparities exist between SGM (and SGM subgroups) and non-SGM, and identifies
potentially actionable AD risk factors and SDoH significant to SGM and their disparities. The success of this
project will fill important gaps in our knowledge of AD risk and progression pathways in the SGM populations,
and establish a framework for creating RWD-based virtual cohort, which can inform national pragmatic trials
across PCORnet for future SGM aging clinical studies.
抽象的
性少数群体(SGM)面临独特的健康问题,但关于 SGM 健康的研究很少。
特别是,SGM 个体中有关阿尔茨海默氏症等年龄相关疾病的数据有限
疾病(AD)和相关的痴呆症是一种致命的退行性疾病,具有多种危险因素,
从临床特征到健康的社会决定因素 (SDoH),AD 患者通常会从以下方面发展而来。
认知能力未受损到(可能)轻度认知障碍(MCI),随后严重程度增加
然而,有证据表明,AD 临床综合征中的痴呆症存在异质性。
通过多个中间阶段进展为 AD 表征不同的 AD 进展途径。
另一方面,相关的风险因素对于风险分层和预防至关重要。
具有真实世界数据 (RWD) 的大型临床研究网络 (CRN) 的激增,包括电子医疗
记录 (EHR)、索赔和计费数据等,为生成真实世界的证据提供了机会
(RWE)这将对 SGM 人群的 AD 预防和护理产生直接的转化影响。
然而,在使用 RWD 研究 AD 方面存在许多关键研究和方法上的差距
SGM,包括缺乏 (1) 经过验证的可计算表型 (CP) 和自然语言处理 (NLP)
可以准确定义 SGM 人群并提取关键患者特征和结果的工具
(例如,MoCA 评分来确定严重程度),(2) 考虑 AD 的异质性及其进展
(3) 考虑 SGM 人群中的 AD 差异,特别是在个人-
和上下文级别的 SDoH 响应 NOT-AG-21-050,我们建议分析大量 RWD 集合。
在 OneFlorida+ 和 INSIGHT 网络中,两个 CRN 为国家以患者为中心的临床做出了贡献
研究网络 (PCORnet),旨在:(1) 创建可跟踪的真实世界纵向 SGM 和 AD 队列
凭借常规临床护理,(2) 使用新型联合机器对 AD 进展的异质性进行建模
学习方法,以及 (3) 检查 SGM 在 AD 结果方面的差异(即发病和进展途径)
以及 AD 临床风险因素和 SDoH 影响这些 AD 结果的因果路径。
新颖,并将产生直接的转化影响,因为它提供了具体的 RWE 来填补知识空白
检查 SGM(和 SGM 亚组)与非 SGM 之间是否存在 AD 差异,并确定
潜在的可采取行动的 AD 风险因素和 SDoH 对 SGM 及其差异具有重要意义。
该项目将填补我们对 SGM 人群 AD 风险和进展途径知识的重要空白,
建立一个框架来创建基于 RWD 的虚拟队列,为国家实用试验提供信息
跨 PCORnet 用于未来 SGM 衰老临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湿热老化下的CFRP胶-螺连接结构疲劳失效机理研究
- 批准号:52305160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Research and Mentoring Program in Improving Access to Incontinence Care for Older Adults
改善老年人失禁护理机会的研究和指导计划
- 批准号:
10448631 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
A multi-component non-pharmacological intervention to improve cognitive outcomes in hematologic cancer survivors
一种多成分非药物干预措施,可改善血液癌症幸存者的认知结果
- 批准号:
10437361 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
Research and Mentoring Program in Improving Access to Incontinence Care for Older Adults
改善老年人失禁护理机会的研究和指导计划
- 批准号:
10650761 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别: