Using Search Engine Data for Detection and Early Intervention in Suicide Prevention
使用搜索引擎数据进行自杀预防的检测和早期干预
基本信息
- 批准号:10616794
- 负责人:
- 金额:$ 85.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-05 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmericanBehaviorBehavioralCardiovascular systemCaringCause of DeathCessation of lifeCharacteristicsClassificationClinicalCohort StudiesCommunitiesCrossover DesignDataDecision MakingDetectionDiagnostic ProcedureEarly DiagnosisEarly InterventionEnvironmental ExposureEthicsEventFacebookFamilyFeeling suicidalFoundationsFriendsFrightFutureHealthcareHealthcare SystemsHourIndividualInjuryInpatientsInternetInterviewKnowledgeLengthMachine LearningMedicalMedicineMental disordersMeta-AnalysisMethodsNational Institute of Mental HealthNatureOnline SystemsOutcomeParticipantPathway interactionsPatientsPatternPersonsPopulationPopulations at RiskPreventionPrimary CarePrivatizationProcessProspective StudiesRecommendationRecording of previous eventsReportingResearchResearch PersonnelResearch PriorityRetrospective StudiesRiskRisk FactorsServicesStandardizationSuicideSuicide attemptSuicide preventionSurveysSystemTestingTimeTwitterValidationWorkcare systemscohortcostdetection methoddigitalfollow-upgradient boostinghigh riskideationimprovedinformation seeking behaviorinnovationinstrumentmachine learning methodmortalityonline interventionpredictive toolsprevention serviceprognostic signatureprospectiverandom forestrecruitscreeningsearch enginesocial mediasocial stigmasuicidal behaviorsuicidal morbiditysuicidal risksuicide ratetoolvolunteer
项目摘要
ABSTRACT. Decades of research to improve the prevention and early detection of suicide risk has largely
resulted in the detection of who is most likely to consider suicide, but not when or if that is most likely to
happen. Most detection methods presume patients are in contact with the healthcare system, which only
reaches a proportion of the at-risk population. Many people at high risk for suicide do not seek professional
help because of lack of time, stigma, and fear regarding how they will be treated in the health care system. It is
imperative that we develop methods that can identify proximal risk for suicide that does not depend on system-
level contact. Web-based search tools are ubiquitous, with 46% of the global population using the internet for
information searches and 1.2 trillion searches per year worldwide. Based on our preliminary data, we propose
that this online search-engine behavior may prove to be an effective, private, and immediate method of
proximal risk detection of suicide for anyone, regardless of their contact with systems of care. We will recruit
1,000 people with mental illness with varying risk for suicide. Participants will provide us access to Google
Take-Out (GTO) data, which includes search-engine history and behavior including YouTube. Participants will
include those who have report a suicide attempt in the past year (N=500), those who have made an attempt
over a year ago (N=250), and those who have thoughts of suicide but never attempted (N=250). All will
participate using gold-standard suicide behavior research instruments. Using a case-crossover design, we will
evaluate the intermittent exposures (search based proximal risk factors) with an immediate and transient effect
on risk and an abrupt outcome (suicide attempt). The case-crossover design is a well-tested and proven
approach especially in cases where transient events can trigger acute events such as cardiovascular events,
injuries, and death due to environmental exposures and has been studied with interview data to determine
warning signs for suicide attempts. Further for predicting suicidal attempt/s, we will use robust ensemble-based
machine learning methods such as random forest, gradient boosting to evaluate the predictive nature of
qualitative and quantitative features. The study will conclude in a collaborative dissemination planning process
with our community partners. Thus, this retrospective and prospective study that aligns GTO data with
carefully assessed suicidal thoughts and behaviors has the potential to identify warning signs in search and
YouTube data that predict when suicidal risk and lay the groundwork for innovative pathways to suicide
prevention.
抽象的。数十年来旨在改善自杀风险预防和早期发现的研究在很大程度上取得了进展
结果发现谁最有可能考虑自杀,但没有发现何时或是否最有可能考虑自杀
发生。大多数检测方法都假设患者与医疗保健系统有联系,而这仅
覆盖一部分高危人群。许多自杀风险较高的人并不寻求专业人士的帮助
由于缺乏时间、耻辱以及对医疗保健系统如何对待他们的恐惧而提供帮助。这是
当务之急是我们开发出能够识别不依赖于系统的近期自杀风险的方法。
水平接触。基于网络的搜索工具无处不在,全球 46% 的人口使用互联网进行搜索
全球每年的信息搜索和 1.2 万亿次搜索。根据我们的初步数据,我们建议
这种在线搜索引擎行为可能被证明是一种有效、私密且直接的方法
对任何人进行自杀的近端风险检测,无论他们是否接触过护理系统。我们将招募
1,000 名具有不同自杀风险的精神疾病患者。参与者将为我们提供访问 Google 的权限
Take-Out (GTO) 数据,包括搜索引擎历史记录和行为(包括 YouTube)。参与者将
包括那些在过去一年中报告过自杀企图的人 (N=500)、那些曾尝试过自杀的人
一年多前(N=250),以及有自杀念头但从未尝试过的人(N=250)。都会
参与使用金标准自杀行为研究工具。使用案例交叉设计,我们将
评估间歇性暴露(基于近端危险因素的搜索),并产生即时和短暂的影响
关于风险和突然的结果(自杀企图)。外壳交叉设计经过充分测试和验证
特别是在瞬时事件可能引发心血管事件等急性事件的情况下,
因环境暴露造成的伤害和死亡,并通过访谈数据进行了研究以确定
自杀企图的警告信号。进一步为了预测自杀企图,我们将使用基于鲁棒的集成
机器学习方法,例如随机森林、梯度提升来评估预测性质
定性和定量特征。该研究将以协作传播规划过程结束
与我们的社区合作伙伴。因此,这项回顾性和前瞻性研究将 GTO 数据与
仔细评估自杀想法和行为有可能在搜索和自杀过程中识别警告信号
YouTube 数据可预测自杀风险,并为创新自杀途径奠定基础
预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHERINE ANNE COMTOIS其他文献
KATHERINE ANNE COMTOIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHERINE ANNE COMTOIS', 18)}}的其他基金
Aeschi Model in Integrated Care: Treatment Development Study to Improve Outcomes for Suicidal Patients
综合护理中的阿埃斯基模型:改善自杀患者预后的治疗开发研究
- 批准号:
10575211 - 财政年份:2023
- 资助金额:
$ 85.96万 - 项目类别:
UW Practice-based Suicide Prevention Research Center
华盛顿大学基于实践的自杀预防研究中心
- 批准号:
10575206 - 财政年份:2023
- 资助金额:
$ 85.96万 - 项目类别:
Caring Texts: A Strength-based, Suicide Prevention Trial in 4 Native Communities
关爱文本:在 4 个原住民社区进行的基于力量的自杀预防试验
- 批准号:
9905426 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
Caring Texts: A Strength-based, Suicide Prevention Trial in 4 Native Communities
关爱文本:在 4 个原住民社区进行的基于力量的自杀预防试验
- 批准号:
10375608 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
Caring Texts: A Strength-based, Suicide Prevention Trial in 4 Native Communities
关爱文本:在 4 个原住民社区进行的基于力量的自杀预防试验
- 批准号:
10598496 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
Caring Texts: A Strength-based, Suicide Prevention Trial in 4 Native Communities
关爱文本:在 4 个原住民社区进行的基于力量的自杀预防试验
- 批准号:
9067044 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
Caring Texts: A Strength-based, Suicide Prevention Trial in 4 Native Communities
关爱文本:在 4 个原住民社区进行的基于力量的自杀预防试验
- 批准号:
9274101 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
Preventing Addiction Related Suicide (PARS) - Controlled Trial of Secondary Suicide Prevention
预防成瘾相关自杀 (PARS) - 二级自杀预防对照试验
- 批准号:
9926359 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
Caring Texts: A Strength-based, Suicide Prevention Trial in 4 Native Communities
关爱文本:在 4 个原住民社区进行的基于力量的自杀预防试验
- 批准号:
10328292 - 财政年份:2016
- 资助金额:
$ 85.96万 - 项目类别:
相似海外基金
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 85.96万 - 项目类别:
Increasing muscle mass resolves vascular dysfunction in obesity
增加肌肉质量可以解决肥胖症的血管功能障碍
- 批准号:
10679363 - 财政年份:2023
- 资助金额:
$ 85.96万 - 项目类别:
Corticosteroids for Acute Exacerbations of Idiopathic Pulmonary Fibrosis: Patterns and Outcomes
皮质类固醇治疗特发性肺纤维化急性加重:模式和结果
- 批准号:
10679224 - 财政年份:2023
- 资助金额:
$ 85.96万 - 项目类别:
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
- 批准号:
10679154 - 财政年份:2023
- 资助金额:
$ 85.96万 - 项目类别: