Machine learning approaches for improving EEG data utility in SUDEP research
用于提高 SUDEP 研究中脑电图数据效用的机器学习方法
基本信息
- 批准号:10593406
- 负责人:
- 金额:$ 25.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptedAgeAlgorithmsApplications GrantsArea Under CurveArtificial IntelligenceBenchmarkingBig DataBiological MarkersBrain StemCessation of lifeClinicalCollaborationsComplexCounselingDataData AnalysesData ScienceData SetDevelopmentElectrocardiogramElectroencephalographyEnsureEpilepsyExhibitsFeedbackGenerationsGoalsGrantHumanImageIndividualInterventionLabelLearningMRI ScansMachine LearningMagnetic Resonance ImagingMedicineMethodsModelingMorphologic artifactsNatural regenerationNeurologicNeurologyParentsPatientsPerformancePersonsPrevention strategyProcessPsychiatryPublishingReadinessRecordsReproducibilityResearchRetrospective cohort studyRiskRisk FactorsSample SizeSamplingSystemTechniquesTestingUnited States National Institutes of HealthValidationVisitanalytical toolbasebiomarker discoverycandidate markercase controlcomputerized toolsdata cleaningdata formatdata qualitydata standardsdeep learningdeep learning modeldistributed dataexperiencefrontierheart rate variabilityhigh riskimprovedinnovationinterestlearning strategymachine learning methodmachine learning modelmedical schoolsmortalitymultimodal datamultimodalitynovel markeropen dataparent grantparent projectpotential biomarkerpredictive modelingrepositoryresearch studyresponserisk predictionrisk prediction modelscreeningsexsuccesssudden unexpected death in epilepsytranslational impact
项目摘要
Project Summary
The parent R01 project will test the hypothesis that Sudden Unexpected Death in Epilepsy (SUDEP) cases
exhibit different clinical, electroclinical and imaging features that can be identified and validated (Aim 1) and then
incorporated into an individualized Bayesian risk prediction model (Aim 2). The study will compare SUDEP cases
with age/sex-matched living epilepsy patients to identify clinical features and biomarkers, focusing on
electroencephalography (EEG), electrocardiogram (ECG), and magnetic resonance imaging (MRI) data that are
easily obtained during routine clinical visits. Potential biomarkers include postictal generalized EEG suppression,
interictal ECG heart-rate variability, and decreased volume in limbic and brainstem regions on structural MRI
scans. To leverage state-of-the-art computational tools for biomarker discovery, the parent R01’s Aim 3 employs
artificial intelligence (AI) and machine learning (ML) techniques to uncover novel biomarkers from interictal EEG
data.
The proposed supplemental project is closely aligned with the parent R01’s Aim 3 and builds on the base
of augmented datasets and new AI/ML techniques. Our research team consists of SUDEP and AI/ML experts
with complementary expertise who are uniquely qualified to develop innovative analytic tools for EEG data AI/ML-
readiness. In Aim 1, we will develop ML models to enhance data interpretation. In Aim 2, we will employ data
augmentation techniques to improve the consistency of labeled EEG data from both SUDEP cases and living
epilepsy patient controls. Overall, this administrative supplemental proposal will further enrich the research aims
in our parent grant, and promote research rigor, transparency and reproducibility. Accomplishing these aims will
maximize the data utility and improve AI/ML-readiness in epilepsy research.
项目概要
父 R01 项目将检验癫痫猝死 (SUDEP) 病例的假设
表现出可以识别和验证的不同临床、电临床和成像特征(目标 1),然后
纳入个性化贝叶斯风险预测模型(目标 2) 该研究将比较 SUDEP 案例。
与年龄/性别匹配的活体癫痫患者一起确定临床特征和生物标志物,重点关注
脑电图 (EEG)、心电图 (ECG) 和磁共振成像 (MRI) 数据
在常规临床就诊期间很容易获得潜在的生物标志物,包括发作后全身脑电图抑制,
发作间期心电图心率变异性,以及结构 MRI 上边缘和脑干区域体积减少
为了利用最先进的计算工具来发现生物标志物,母体 R01 的 Aim 3 采用了扫描。
人工智能 (AI) 和机器学习 (ML) 技术从发作间期脑电图中发现新的生物标志物
数据。
拟议的补充项目与母体 R01 的目标 3 密切相关,并建立在该基础上
我们的研究团队由 SUDEP 和 AI/ML 专家组成。
具有互补的专业知识,他们具有独特的资格来开发脑电图数据人工智能/机器学习的创新分析工具
在目标 1 中,我们将开发 ML 模型来增强数据解释。在目标 2 中,我们将使用数据。
增强技术,以提高 SUDEP 病例和生活中标记脑电图数据的一致性
总体而言,这项行政补充提案将进一步丰富研究目标。
在我们的家长资助中,并提高研究的严谨性、透明度和可重复性将实现这些目标。
最大限度地提高数据效用并提高癫痫研究中的 AI/ML 准备度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orrin Devinsky其他文献
Orrin Devinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Orrin Devinsky', 18)}}的其他基金
Advancing SUDEP risk prediction using a multicenter case-control approach
使用多中心病例对照方法推进 SUDEP 风险预测
- 批准号:
10290017 - 财政年份:2021
- 资助金额:
$ 25.16万 - 项目类别:
Advancing SUDEP risk prediction using a multicenter case-control approach
使用多中心病例对照方法推进 SUDEP 风险预测
- 批准号:
10463739 - 财政年份:2021
- 资助金额:
$ 25.16万 - 项目类别:
Development and validation of empirical models of the neuronal population activity underlying non-invasive human brain measurements
开发和验证非侵入性人脑测量中神经元群活动的经验模型
- 批准号:
9975889 - 财政年份:2016
- 资助金额:
$ 25.16万 - 项目类别:
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Evaluation and optimization of NWB neurophysiology software and data in the cloud
NWB 神经生理学软件和云数据的评估和优化
- 批准号:
10827688 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
Developing a pragmatic guide to implementing social risk referrals: A partnership between Caring Health Center (CHC) and the Implementation Science Center for Cancer
制定实施社会风险转诊的实用指南:关爱健康中心 (CHC) 与癌症实施科学中心之间的合作伙伴关系
- 批准号:
10822141 - 财政年份:2023
- 资助金额:
$ 25.16万 - 项目类别:
CDR Administrative Supplement for COVID-19 Impacted NIMH Research
针对受新冠肺炎 (COVID-19) 影响的 NIMH 研究的 CDR 行政补充
- 批准号:
10617502 - 财政年份:2022
- 资助金额:
$ 25.16万 - 项目类别: