SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
基本信息
- 批准号:10615840
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAllogenicAmericanAnimal ModelBeta CellBiocompatible MaterialsBiologicalBiomedical EngineeringBiotechnologyCell LineCell SurvivalCell TherapyCell TransplantationCell physiologyCell secretionCellsCellular StructuresChinaChronicChronic DiseaseClinicalDevelopmentDevice DesignsDevicesDiabetes MellitusDiseaseDisease modelDoseDrug Delivery SystemsDrug ModulationDrug TargetingEconomicsElectronicsElementsEmerging TechnologiesEncapsulatedEngineeringEnsureFactor VIIIFibrosisForeign BodiesForeign-Body ReactionFrustrationGasesGene ActivationGenerationsGeneticGlucoseGraft SurvivalHemophilia AHumanHuman EngineeringHybrid CellsHypoxiaImmuneImmune responseImmune systemImmunosuppressionImplantIn SituInflammationLightLiver diseasesMaintenanceMedicineMembraneMicrocapsules drug delivery systemMicrofabricationModelingModificationMonitorMusNatureNutrientOpticsOxygenPermeabilityPharmaceutical PreparationsPopulationPorosityPre-Clinical ModelPreclinical TestingProductionPropertyProtein SecretionProteinsProtonsRiskRodentScientific Advances and AccomplishmentsSiliconesSourceTechniquesTechnologyTestingTherapeuticTimeTransplantationWorkXenograft procedurebetacell therapybioelectronicsbiomaterial compatibilitycapsulecellular engineeringclinical translationdensitydesignepigenetic silencingflexibilityimmune functionimmunogenicimplantable deviceimplantationimprovedin vivoisletmouse modelnonhuman primatenoveloptogeneticsoxygen transportpreventprotein transportresponsesolid statestable cell linestandard of caresurface coatingtechnology developmenttherapeutic proteintransgene expressionwireless
项目摘要
Cell-based therapies, where naturally or artificially engineered cells secreting therapeutic
proteins are grafted onto the body to act as biological drug factories, are an attractive
approach for long-term treatment of chronic diseases such as hemophilia, diabetes and liver
disorders. However, ‘off the shelf’ therapeutic cells are immunogenic to the host and must be
protected from the host immune system. Cell-encapsulation has emerged as an attractive
strategy to transplant these cells without chronic immunosuppression. Here, cells are placed
in an immune-isolating device which physically separates the cells from the components of the
immune system while providing access to oxygen and nutrients. Retrievable macroscale cell-
encapsulation devices (macrodevice), are attractive in this context as they provide a safer
path to clinical translation. Unfortunately, a standalone macrodevice that remains functional in
humans over long-periods (>6 months) is yet to be realized due to two core challenges: 1) a
foreign-body reaction to the implanted device causing inflammation and fibrosis, and 2)
inadequate supply of oxygen and nutrients to the encapsulated cells. Here, we propose to
build on several promising recent advances in biomaterials design, microfabrication,
bioelectronics and cell engineering from our team to develop an advanced “smart”
macrodevice platform with integrated electronic components which overcomes the major
limitations of current device designs. First, we will develop an engineered cell line which is
amenable to long term encapsulation and suitable for clinical translation. Landing pads within
these cells will ensure stable transgene expression, allowing for broad control of therapeutic
protein secretion (Aim 1). Separately, we will develop a bioelectronic macrodevice as a
platform for long- term transplant of these cells in vivo. Our device will incorporate novel
membranes with uniform/controlled pore-sizes and enhanced oxygen transport properties. In
parallel, we will develop new surface coating techniques to minimize fibrosis and ensure long-
term graft survival. We will integrate proton exchange membranes and optoelectronic
components to allow a) in-situ oxygen generation, and b) optical gene activation to allow for
triggerable control of protein production by the encapsulated cells (Aim 2). Finally, we will test
the device in B6 mice using a model protein (SEAP) to test for long term survival of cells and
external control of protein delivery. We will develop the device as a platform to delivery of
Factor VIII for the treatment of Hemophilia A (Aim 3) as a model disease. If successful, the
platform will represent a qualitative technological advancement in the field of cell therapy.
基于细胞的疗法,其中自然或人工改造的细胞分泌疗法
蛋白质被移植到身体上作为生物药物工厂,是一种有吸引力的
血友病、糖尿病、肝病等慢性病的长期治疗方法
然而,“现成的”治疗细胞对宿主具有免疫原性,并且必须具有免疫原性。
免受宿主免疫系统的影响,细胞封装已成为一种有吸引力的技术。
在没有长期免疫抑制的情况下移植这些细胞的策略在这里,细胞被放置。
在免疫隔离装置中,该装置将细胞与细胞的成分物理分离
免疫系统,同时提供可回收的大尺度细胞。
封装设备(宏设备)在这方面很有吸引力,因为它们提供了更安全的
不幸的是,一个独立的宏设备仍然可以发挥作用。
由于两个核心挑战,人类长期(> 6个月)尚未实现:1)a
对植入装置的异物反应导致炎症和纤维化,以及 2)
封装细胞的氧气和营养供应不足。
建立在生物材料设计、微加工、
我们团队利用生物电子学和细胞工程开发先进的“智能”
具有集成电子元件的宏设备平台克服了主要问题
首先,我们将开发一种工程细胞系。
适合长期封装并适合临床转化。
这些细胞将确保稳定的转基因表达,从而能够广泛控制治疗
另外,我们将开发一种生物电子宏器件作为蛋白质分泌(目标 1)。
我们的设备将包含新颖的体内长期移植平台。
具有均匀/受控孔径和增强的氧传输性能的膜。
与此同时,我们将开发新的表面涂层技术,以最大限度地减少纤维化并确保长期
术语移植存活。我们将整合质子交换膜和光电。
组件允许 a) 原位氧气产生,和 b) 光基因激活以允许
封装细胞对蛋白质产生的可触发控制(目标 2)。
该装置在 B6 小鼠体内使用模型蛋白 (SEAP) 来测试细胞的长期存活和
我们将开发该设备作为蛋白质输送的平台。
因子 VIII 用于治疗 A 型血友病(目标 3)作为模型疾病 如果成功,则
平台将代表细胞治疗领域的质的技术进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL G ANDERSON其他文献
DANIEL G ANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL G ANDERSON', 18)}}的其他基金
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10446179 - 财政年份:2022
- 资助金额:
$ 60.47万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10344605 - 财政年份:2022
- 资助金额:
$ 60.47万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10548169 - 财政年份:2022
- 资助金额:
$ 60.47万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10386924 - 财政年份:2021
- 资助金额:
$ 60.47万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10592273 - 财政年份:2021
- 资助金额:
$ 60.47万 - 项目类别:
Develop combinatorial non-viral and viral CRISPR delivery for lung diseases
开发针对肺部疾病的组合非病毒和病毒 CRISPR 递送
- 批准号:
10274832 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别:
Interfering with the macrophage life cycle of atherosclerosis
干扰动脉粥样硬化的巨噬细胞生命周期
- 批准号:
9412185 - 财政年份:2017
- 资助金额:
$ 60.47万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
9061704 - 财政年份:2013
- 资助金额:
$ 60.47万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8706186 - 财政年份:2013
- 资助金额:
$ 60.47万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8839787 - 财政年份:2013
- 资助金额:
$ 60.47万 - 项目类别:
相似国自然基金
抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
- 批准号:82270210
- 批准年份:2022
- 资助金额:68 万元
- 项目类别:面上项目
胸腺上皮细胞在小鼠后肢同种异体复合组织移植中的免疫调节作用及相关机制研究
- 批准号:82102354
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过表达MicroRNA-199a-3p的BMSCs来源的外泌体抑制小鼠DC功能诱导同种异体心脏移植免疫耐受的机制研究
- 批准号:82160081
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
m6A甲基转移酶Zc3h13调控同种异体iPSCs的免疫原性构建新型心肌补片的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
具有靶向识别和序贯治疗功能的纳米微球对血管化同种异体复合组织移植术后免疫抑制的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
- 批准号:
10720685 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别:
Sustained regulation of hypothalamus-pituitary-ovary hormones with tissue-engineered ovarian constructs as a treatment for osteoporosis in females
利用组织工程卵巢结构持续调节下丘脑-垂体-卵巢激素作为女性骨质疏松症的治疗方法
- 批准号:
10659277 - 财政年份:2023
- 资助金额:
$ 60.47万 - 项目类别: