Structural Studies of the Eukaryotic Transcription Initiation Machinery
真核转录起始机制的结构研究
基本信息
- 批准号:9131755
- 负责人:
- 金额:$ 24.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-05-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesArchitectureBindingBiochemicalBiochemistryCellsClinicClinicalComplexCuesDNADNA StructureDevelopmentDevelopmental ProcessDiseaseElectron MicroscopyEssential GenesGene ActivationGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGrowthHealthHumanImage AnalysisImageryIndiumIndividualLightMalignant NeoplasmsMediatingMessenger RNAModelingMolecularMolecular GeneticsMolecular ProfilingNeoplasm MetastasisNeoplasmsNucleotidesOrganismPeptide Initiation FactorsPluripotent Stem CellsPositioning AttributeProcessPropertyProteinsRegulationRegulator GenesResearchRestSourceStem Cell ResearchStructureSystemTechniquesTranscription CoactivatorTranscription ElongationTranscription Factor TFIIATranscription Factor TFIIBTranscription InitiationTranscription Initiation SiteTranscription ProcessTranscriptional Regulationangiogenesisbasecell growthcofactorenvironmental changeflexibilityfunctional plasticitygene repressionhelicasein vivoinduced pluripotent stem cellmeltingmicroscopic imagingnovelparticlepolypeptidepromoterprotein complexprotein structurereconstitutionreconstructionresponsetranscription factor TFIIHzygote
项目摘要
Transcriptional regulation of gene expression is a complex task, critical for growth
and survival, whether as part of the developmental process from the fertilized egg, or
when adapting to changing environmental conditions. The transcription initiation step is
arguably the most regulated step in gene transcription, as fine tuning both its rate and
synchrony can serve as a key control point to produce organism-wide changes in gene
expression profiles in response to developmental and environmental cues.
Not surprisingly, the complexity of gene regulatory circuitries is paralleled by the size
and complexity of the molecular players involved in transcription initiation. Over the past
30 years, biochemistry, molecular genetics, and in vivo studies have uncovered most, if
not all, of the central components of the transcriptional apparatus. However, a
mechanistic understanding of gene expression in humans poses a formidable challenge
and lags dramatically behind. A major obstacle is that the transcriptional machinery
comprises more than 100 individual polypeptides that operate as a huge and dynamic
assemblage made up of functionally distinct multi-subunit complexes, many of them only
accessible from endogenous sources. We are using single particle EM reconstruction to
characterize the architecture, dynamics and interactions of large human complexes
essential for gene regulation. 3D Cryo-EM reconstruction is a technique ideally suited to
this task, as it requires limited amounts of material, is optimal to study very large
assemblies, and is has the potential to detect and characterize conformational flexibility,
a property to may prove critical to be able to describe the functional plasticity required in
transcriptional complexes like TFIID, an essential hub in this process that needs to bind
to different DNA core promoters and integrate the input from a large variety of
transcriptional activators and cofactors.
The significance to human health of a fundamental understanding of how gene
transcription is switched on and off cannot be overstated. Such significance is
highlighted by the fact that development of various cancers is accompanied by
alterations in gene expression leading to various aspects of the disease, and by the
discovery of induced pluripotent stem cells, where the expression of 3-4 global
transcriptional activators is sufficient to introduce gene expression changes needed to
transition into a pluripotent state. By understanding the protein structures necessary for
gene activation, we will guide future research into the development of novel treatments
that target the control of gene expression mediating cell growth, neoplasia, metastasis,
and angiogenesis in humans or those aimed at facilitating the transition of induced
pluripotent stem cells research into the clinic.
基因表达的转录调节是一项复杂的任务,对生长至关重要
和生存,无论是作为受精卵发育过程的一部分,还是
适应不断变化的环境条件时。转录启动步骤是
可以说是基因转录中最受调节的步骤,因为它的速率和
同步可以作为产生范围有机体变化基因变化的关键控制点
响应发展和环境线索的表达谱。
毫不奇怪,基因调节电路的复杂性与大小相似
和参与转录启动的分子参与者的复杂性。过去
30年,生物化学,分子遗传学和体内研究大多数(如果
并非全部是转录设备的中心组成部分。但是,
对人类基因表达的机械理解带来了巨大的挑战
并落后于落后。主要障碍是转录机械
由100多种单独的多肽组成,这些多肽是一个巨大而动态的
由功能上不同的多生成络合物组成的组合,其中许多仅
可从内源性来源访问。我们正在使用单个粒子EM重建
表征大型人类综合体的结构,动态和相互作用
对于基因调节必不可少的。 3D Cryo-Em重建是一种理想的技术
这项任务,因为它需要有限的材料,因此非常适合学习很大
组件,并且具有检测和表征构象柔韧性的潜力,
能够描述所需的功能可塑性可能是至关重要的
转录复合物(如TFIID),这是此过程中的基本集线器,需要结合
到不同的DNA核心启动子,并整合了各种各样的输入
转录激活剂和辅因子。
对人类健康的意义,对基因的基本了解
转录打开和关闭不能被夸大。这种意义是
通过以下事实强调了各种癌症的发展
基因表达的改变导致疾病的各个方面,并由
发现诱导多能干细胞的发现,其中3-4全局的表达
转录激活剂足以引入所需的基因表达变化
过渡到多能状态。通过了解所需的蛋白质结构
基因激活,我们将指导未来研究新疗法的发展
靶向介导细胞生长,肿瘤,转移的基因表达的控制
和人类或旨在促进诱导过渡的人的血管生成
多能干细胞研究诊所。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Architecture of the human XPC DNA repair and stem cell coactivator complex.
人类 XPC DNA 修复和干细胞共激活剂复合物的结构。
- DOI:10.1073/pnas.1520104112
- 发表时间:2015
- 期刊:
- 影响因子:11.1
- 作者:Zhang,ElisaT;He,Yuan;Grob,Patricia;Fong,YickW;Nogales,Eva;Tjian,Robert
- 通讯作者:Tjian,Robert
How Cryo-EM Became so Hot.
- DOI:10.1016/j.cell.2017.11.016
- 发表时间:2017-11-30
- 期刊:
- 影响因子:64.5
- 作者:Cheng Y;Glaeser RM;Nogales E
- 通讯作者:Nogales E
Go hybrid: EM, crystallography, and beyond.
- DOI:10.1016/j.sbi.2012.07.006
- 发表时间:2012-10
- 期刊:
- 影响因子:6.8
- 作者:Lander GC;Saibil HR;Nogales E
- 通讯作者:Nogales E
Regulatory interplay between TFIID's conformational transitions and its modular interaction with core promoter DNA.
- DOI:10.4161/trns.25291
- 发表时间:2013-05
- 期刊:
- 影响因子:0
- 作者:Cianfrocco MA;Nogales E
- 通讯作者:Nogales E
Structural visualization of key steps in human transcription initiation.
- DOI:10.1038/nature11991
- 发表时间:2013-03-28
- 期刊:
- 影响因子:64.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva Nogales其他文献
Eva Nogales的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva Nogales', 18)}}的其他基金
Structural studies of function and regulation of microtubules and transcriptional gene expression machinery
微管和转录基因表达机制的功能和调节的结构研究
- 批准号:
10399598 - 财政年份:2018
- 资助金额:
$ 24.95万 - 项目类别:
Structural studies of function and regulation of microtubules and transcriptional gene expression machinery
微管和转录基因表达机制的功能和调节的结构研究
- 批准号:
10231000 - 财政年份:2018
- 资助金额:
$ 24.95万 - 项目类别:
Structural studies of function and regulation of microtubules and transcriptional gene expression machinery
微管和转录基因表达机制的功能和调节的结构研究
- 批准号:
9921426 - 财政年份:2018
- 资助金额:
$ 24.95万 - 项目类别:
Structural studies of function and regulation of microtubules and transcriptional gene expression machinery
微管和转录基因表达机制的功能和调节的结构研究
- 批准号:
10623788 - 财政年份:2018
- 资助金额:
$ 24.95万 - 项目类别:
Septin Filaments: Architecture, Assembly and Regulation
Septin 细丝:架构、组装和调节
- 批准号:
8600295 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
Septin Filaments: Architecture, Assembly and Regulation
Septin 细丝:架构、组装和调节
- 批准号:
8437071 - 财政年份:2013
- 资助金额:
$ 24.95万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Programmable peptide-guided protein degradation
可编程肽引导的蛋白质降解
- 批准号:
10741655 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Probing the Role of Integrator in Neuronal Function
探讨积分器在神经元功能中的作用
- 批准号:
10777205 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Chemical proteomic investigation of lipid kinase specificity and druggability
脂质激酶特异性和成药性的化学蛋白质组学研究
- 批准号:
10660099 - 财政年份:2023
- 资助金额:
$ 24.95万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10464289 - 财政年份:2022
- 资助金额:
$ 24.95万 - 项目类别:
Modulation of nuclear pore complex structure and function by nuclear envelope tension
核膜张力调节核孔复杂结构和功能
- 批准号:
10388820 - 财政年份:2022
- 资助金额:
$ 24.95万 - 项目类别: