Monochromatic 222 nm UV light: Development of a safe, cost-effective technology for the efficient reduction of bacterial and viral infection and transmission
单色 222 nm 紫外线:开发安全、经济高效的技术,有效减少细菌和病毒的感染和传播
基本信息
- 批准号:9140848
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2017-03-14
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAerosolsAnti-Bacterial AgentsAreaBacteriaBacterial InfectionsBiocompatible MaterialsBiophysicsCellsCharacteristicsClinicalCorneaCytoplasmDevelopmentDevicesDisinfectionDrug resistanceEconomicsEngineeringEyeFilmGasesGenerationsGoalsHealthHealth HazardsHospitalsHumanIn VitroIndividualInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeLegal patentLightLightingMercuryMicrobeModalityModelingOperative Surgical ProceduresPhasePhotonsPlasmaPreventionProductionPropertyRadiationResearchResourcesSafetySchoolsScientistSiteSkinSourceSterilizationStratum corneumStructureSurfaceSurgical woundTailTechnologyTuberculosisUltraviolet B RadiationUltraviolet RaysUniversitiesViralVirusVirus Diseasesantimicrobialbasecold temperaturecommercial applicationcost effectivecost effectivenessdesigndrug resistant bacteriahazardhealth care economicshuman tissuein vitro Assayin vivoinfluenzavirusinnovationkillingsmethicillin resistant Staphylococcus aureusmicrobialmouse modelnoveloperationpathogenprogramspublic health relevanceresistant straintooltransmission processwound
项目摘要
DESCRIPTION (provided by applicant): Drug resistant bacteria, such as MRSA, and airborne-transmitted microbes, such as influenza and TB, together present major health issues both in the developed and the developing world, with major health care and economic consequences. Recent research from Columbia University Medical Center demonstrated that single- wavelength far-UVC photons can kill bacteria and viruses while it cannot penetrate either the human stratum corneum (the outer dead-cell skin layer), nor the ocular cornea, nor the corneal tear-film layer, nor even the cytoplasm of individual human cells. In particular, the results teste both in vitro and in vivo have shown that several far-UVC wavelengths (such as 207 and 222 nm) are as efficient as conventional mercury containing germicidal UV lamp in inactivating both drug-resistant bacteria (e.g. MRSA) and viruses (e.g. H1N1), but these two far UVC wavelengths induce no damage to skin or to eyes, for a wide range of clinical endpoints, in contrast to a conventional broad-spectrum germicidal lamp. In this program, the team of Columbia University and Eden Park Illumination propose a novel, efficient disinfection tool which can be scalable and affordable. The team will develop uniform and flat lamps having anti-microbial advantages over conventional cylindrical UV lamps, but without the safety hazards. Eden Park have commercialized a new generation of UV light tiles with a patented microcavity plasma technology, producing lamps with a scalable, slim form factor for uniformly treating large surfaces. Based on confinement of low temperature plasma within large arrays of microcavities, this technology is ideally-suited for the efficient, inexpensive production of excimer-based 222 nm UV lamp. The technology of a monochromatic excimer lamp emitting 222 nm UV radiation will have two initial applications: 1) reducing surgical site infections, in which 222 nm photons will continuously illuminate the wound during surgery, and 2) minimizing airborne transmission of microbes such as TB and influenza, in which whole-room illumination will be used. Both have been successfully demonstrated with conventional germicidal lamps but widespread use has been limited due to the associated health hazards of conventional lamps. The Phase I Project Aims are first, to design and develop 222 nm microplasma UV flat lamp optimized for this germicidal application, and second, to use the lamp to demonstrate effective germicidal properties. The first Aim will involve design and optimization of a microplasma-based monochromatic far-UVC flat lamp optimized for germicidal applications, with the milestone of a 222 nm flat UV lamp without higher wavelength "contaminants", and with a lamp structure and gas mixture optimized for long lifetime. The second Aim is to demonstrate the efficacy of this 222 nm microplasma flat lamp for anti-bacterial efficiency in an in vivo wound model and for anti-viral efficiency in an airborne aerosol model. The milestones here are to demonstrate appropriate levels of MRSA killing in a murine model of surgical site infection, and appropriate levels of H1N1 influenza virus killing in an airborne aerosol model.
描述(由申请人提供):耐药细菌(例如 MRSA)和空气传播的微生物(例如流感和结核病)共同构成了发达国家和发展中国家的重大健康问题,造成了重大的医疗保健和经济后果。哥伦比亚大学医学中心的研究表明,单波长远紫外光子可以杀死细菌和病毒,但它既不能穿透人体角质层(外层死细胞皮肤层),也不能穿透眼角膜,也不能穿透眼角膜。特别是,体外和体内测试结果表明,几种远紫外波长(例如 207 和 222 nm)与传统的含汞灯一样有效。杀菌紫外线灯可灭活耐药细菌(例如 MRSA)和病毒(例如 H1N1),但这两种远 UVC 波长不会对皮肤或眼睛造成伤害,因为与传统的广谱杀菌灯相比,具有广泛的终点。在该项目中,哥伦比亚临床大学和 Eden Park Illumination 的团队提出了一种新型、高效的消毒工具,该工具可扩展且价格实惠。与传统的圆柱形紫外线灯相比,平板灯具有抗菌优势,但没有安全隐患。 Eden Park 已将采用专利微腔等离子体技术的新一代紫外线灯瓦商业化,生产灯。该技术具有可扩展、纤薄的外形,可均匀处理大表面,基于将低温等离子体限制在大型微腔内,非常适合高效、廉价地生产基于准分子的 222 nm 紫外线灯。发射 222 nm 紫外线辐射的单色准分子灯将有两个初步应用:1) 减少手术部位感染,其中 222 nm 光子将在手术过程中持续照亮伤口,2)最大限度地减少结核病和流感等微生物的空气传播,其中将使用全房间照明,这两种方法均已通过传统杀菌灯得到成功验证,但由于传统灯的相关健康危害,广泛使用受到限制。目标首先是设计和开发针对该杀菌应用进行优化的 222 nm 微等离子体紫外线平板灯,其次是使用该灯来展示有效的杀菌特性。第一个目标将涉及设计和优化一个杀菌剂。针对杀菌应用而优化的基于微等离子体的单色远 UVC 平板灯,具有里程碑意义,即不含更高波长“污染物”的 222 nm 平板紫外线灯,并且具有针对长寿命而优化的灯结构和气体混合物。这种 222 nm 微等离子体平板灯在体内伤口模型中的抗菌效率和在空气传播的气溶胶模型中的抗病毒效率的功效这里的里程碑是证明适当的水平。在手术部位感染的小鼠模型中杀灭 MRSA,在空气气溶胶模型中杀灭适当水平的 H1N1 流感病毒。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases.
- DOI:10.1038/s41598-018-21058-w
- 发表时间:2018-02-09
- 期刊:
- 影响因子:4.6
- 作者:Welch D;Buonanno M;Grilj V;Shuryak I;Crickmore C;Bigelow AW;Randers-Pehrson G;Johnson GW;Brenner DJ
- 通讯作者:Brenner DJ
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.
- DOI:10.1667/rr0010cc.1
- 发表时间:2017-04
- 期刊:
- 影响因子:3.4
- 作者:Buonanno M;Ponnaiya B;Welch D;Stanislauskas M;Randers-Pehrson G;Smilenov L;Lowy FD;Owens DM;Brenner DJ
- 通讯作者:Brenner DJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID JONATHAN BRENNER其他文献
DAVID JONATHAN BRENNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID JONATHAN BRENNER', 18)}}的其他基金
Center for High-Throughput Minimally-Invasive Radiation Biodosimetry
高通量微创放射生物剂量测定中心
- 批准号:
10590249 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
DNA Repair Phenotype the Missing Link in Breast Cancer Risk Assessment
DNA 修复表型是乳腺癌风险评估中缺失的一环
- 批准号:
10267896 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Flexible Tools for Pre-Clinical Studies to Answer Key Questions UnderlyingHeavy-Ion Radiotherapy
临床前研究的灵活工具可回答重离子放射治疗的关键问题
- 批准号:
9908061 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Flexible Tools for Pre-Clinical Studies to Answer Key Questions UnderlyingHeavy-Ion Radiotherapy
临床前研究的灵活工具可回答重离子放射治疗的关键问题
- 批准号:
10372919 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
DNA Repair Phenotype the Missing Link in Breast Cancer Risk Assessment
DNA 修复表型是乳腺癌风险评估中缺失的一环
- 批准号:
10656666 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
DNA Repair Phenotype the Missing Link in Breast Cancer Risk Assessment
DNA 修复表型是乳腺癌风险评估中缺失的一环
- 批准号:
10215533 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
6 MeV/amu ion linac for deep-penetration microbeam and millimeter-beam charged-particle irradiations in small animals and biological tissues
6 MeV/amu 离子直线加速器,用于小动物和生物组织的深穿透微束和毫米束带电粒子照射
- 批准号:
9493886 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
DNA Repair Phenotype the Missing Link in Breast Cancer Risk Assessment
DNA 修复表型是乳腺癌风险评估中缺失的一环
- 批准号:
10440447 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
DNA Repair Phenotype the Missing Link in Breast Cancer Risk Assessment
DNA 修复表型是乳腺癌风险评估中缺失的一环
- 批准号:
10430801 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
DNA Repair Phenotype the Missing Link in Breast Cancer Risk Assessment
DNA 修复表型是乳腺癌风险评估中缺失的一环
- 批准号:
10090052 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高分辨率气溶胶特性的卫星遥感探测机理与算法模型研究
- 批准号:42375129
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
西北不同生态系统下气溶胶对边界层辐射平衡的影响及模拟研究
- 批准号:42375085
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
污染环境下多尺度气溶胶粒子散射特性研究
- 批准号:52376072
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二次有机气溶胶理化性质对其冰核性能的影响
- 批准号:42375069
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Type II alveolar epithelial cell-intrinsic IL-1 response in protective immunity against tuberculosis
II 型肺泡上皮细胞内在 IL-1 反应在结核病保护性免疫中的作用
- 批准号:
10660267 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Targeted pan-antibacterial liposomes to control pathogenic mycobacteria
靶向泛抗菌脂质体控制致病性分枝杆菌
- 批准号:
10569282 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Granulysin and the antimicrobial activity of CD8T cells - development of a better model
颗粒溶素和 CD8T 细胞的抗菌活性 - 开发更好的模型
- 批准号:
10192536 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Granulysin and the antimicrobial activity of CD8T cells - development of a better model
颗粒溶素和 CD8T 细胞的抗菌活性 - 开发更好的模型
- 批准号:
10356169 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别: