Evaluating the Bilayer-Couple Model of Outer Membrane Vesicle Biogenesis Using Novel Asymmetric Membrane Templates
使用新型不对称膜模板评估外膜囊泡生物发生的双层耦合模型
基本信息
- 批准号:9016995
- 负责人:
- 金额:$ 21.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibiotic ResistanceArchitectureAreaBacteriaBacterial Antibiotic ResistanceBiochemicalBiogenesisBiologicalBiophysical ProcessCaliberCell CommunicationCellsCharacteristicsCommunicationComplementComputer SimulationDevelopmentDiseaseDrug Delivery SystemsEquilibriumFluorescence MicroscopyFoundationsGoalsGram-Negative BacteriaHealthHorizontal Gene TransferImmuneImmune systemIn VitroLipidsLiposomesMediatingMembraneMembrane BiologyMembrane LipidsMicrobial BiofilmsMicrofluidicsModelingMolecularMonitorMono-SOrganismPathogenesisPhospholipidsPhysiologicalPlayPopulationProcessPseudomonasPseudomonas aeruginosaQuinolonesResearchRoleSignal TransductionSorting - Cell MovementStructureSystemTechniquesTechnologyTestingTimeToxinVesicleVirulence Factorsantimicrobialbiophysical modelcomputerized toolsflexibilityhuman diseaseinsightintercalationkillingsmicrobialmolecular dynamicsnovelnovel strategiesparticlephysical propertypreferencepublic health relevanceresearch studyresponsesimulationsmall moleculesynthetic constructtraffickingvaccine development
项目摘要
DESCRIPTION (provided by applicant)
Bacterial secretion has long been recognized as an essential facet of microbial pathogenesis and human disease. One important but poorly understood system, which is ubiquitous among Gram-negative organisms, involves packaging cargo into small outer membrane derived vesicles (OMVs). Numerous virulence factors have been found to be transported in this way, and delivery by OMVs often results in increased potency. OMVs have also been implicated in the killing of host cells and competing bacteria, avoidance of and interference with the immune system, horizontal gene transfer mediating antibiotic resistance, biofilm formation, and trafficking small molecule communication signals. Remarkably, little is known about how these versatile structures are formed or how their cargo is selected and packaged. To address this, our team proposed the Bilayer-Couple Model where intercalation of self-produced small molecules into the outer membrane drives the induction of membrane curvature to initiate OMV formation. This is a biochemical/biophysical model that followed the discovery by our team and colleagues that the Pseudomonas Quinolone Signal (PQS) is packaged within and drives biogenesis of OMVs in Pseudomonas aeruginosa. In developing this model, we encountered a problem that is common in membrane biology: while all biological membranes contain asymmetric lipid distributions (leaflet vs. leaflet), it was impossible to generate a useful quantiy of in vitro liposomes matching these characteristics. Thus, weakly-relevant surrogates had to be used. Recently, our team has developed a novel approach for constructing synthetic asymmetric vesicles possessing a bilayer architecture that is more physiologically accurate than any other available system. Our approach utilizes microfluidic technology to build vesicles with controlled size, membrane asymmetry, uniformity, and luminal content. These vesicles are the ideal system to experimentally test the predictions of the Bilayer-Couple Model. To gain a greater physical insight in complement to experiments, we also propose to create the first-ever atomistic molecular dynamics and mesoscopic dissipative particle dynamics simulation of the bacterial outer membrane to discover the specific interactions between PQS and physiological-relevant asymmetric membranes. In particular, this model will help elucidate the detailed dynamics of PQS insertion into the outer membrane, its orientation PQS vs. surrounding lipids in the leaflet and whether its own physical properties direct its observed packaging into OMVs. Using leading edge experimental and computational tools, this proposal will address fundamental aspects of OMV formation, including (1) how PQS interacts with and alters the structure of the outer membrane, (2) whether these interactions are sufficient to initiate OMV formation, and (3) whether PQS itself may contribute to its accumulation in OMVs as cargo. The fundamental mechanistic foundations established through this study will have implications in many aspects of health research, potentially enabling applied topics such as vaccine development and drug delivery, for which OMVs are rapidly becoming exciting candidates.
描述(由申请人提供)
细菌的分泌长期以来一直是微生物发病机理和人类疾病。增加效力,避免了免疫系统,水平基因转移介导,生物膜形成和运输小分子通信信号。 WhereLelf生产的L分子进入外模型,以使omv形成降低了我们的发现,即在铜绿中遇到了一个问题。在膜生物学中:所有生物膜的脂质脱脂型(传单与传单)不可能产生有用的体外脂质体匹配这些特征。更多的是,以膜不对称,均匀性和腔内含量来构建这些vesict。动力学模拟与Q的动力学相关的不对称膜。 OMV。使用前沿实验和计算工具,该建议将解决OMV组的基本方面,包括(1)PQS与外膜的结构和变化,(2)相互作用是否是足够的OMV形成和( 3)PQ本身是否可以在OMV中积累TOT作为货物的基础,这项研究将对健康Rearch的许多方面具有影响令人兴奋的candidididididididididididididididididididididididits。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Schertzer其他文献
Jeffrey Schertzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Schertzer', 18)}}的其他基金
Pathogen Synergy Through Cross-Species Induction of Outer Membrane Vesicle Biogenesis
通过跨物种诱导外膜囊泡生物发生的病原体协同作用
- 批准号:
10043365 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别:
Pathogen Synergy Through Cross-Species Induction of Outer Membrane Vesicle Biogenesis
通过跨物种诱导外膜囊泡生物发生的病原体协同作用
- 批准号:
10204938 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别:
Evaluating the Bilayer-Couple Model of Outer Membrane Vesicle Biogenesis Using Novel Asymmetric Membrane Templates
使用新型不对称膜模板评估外膜囊泡生物发生的双层耦合模型
- 批准号:
9199067 - 财政年份:2016
- 资助金额:
$ 21.93万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Connecting the universe of proteins to address annotation inequality in the microbial proteome
连接蛋白质领域以解决微生物蛋白质组中的注释不平等问题
- 批准号:
10658439 - 财政年份:2023
- 资助金额:
$ 21.93万 - 项目类别:
A comprehensive investigation of Pseudomonas quorum sensing regulatory relationships and the consequences on quorum sensing inhibitors in complex communities
复杂群落中假单胞菌群体感应调控关系及其对群体感应抑制剂影响的全面研究
- 批准号:
10716869 - 财政年份:2023
- 资助金额:
$ 21.93万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10352579 - 财政年份:2022
- 资助金额:
$ 21.93万 - 项目类别:
Supplement: Development of a technology to certify engineered DNA molecules
补充:开发验证工程 DNA 分子的技术
- 批准号:
10732196 - 财政年份:2022
- 资助金额:
$ 21.93万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10612336 - 财政年份:2022
- 资助金额:
$ 21.93万 - 项目类别: