Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
基本信息
- 批准号:10604849
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2024-09-18
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdherenceAdmission activityAdolescentAlgorithmsAntidepressive AgentsAnxietyAnxiety DisordersApplications GrantsChildChild Mental HealthChildhoodClinicalClinical DataDataData SetDepressed moodDepressive disorderDevelopmentDiseaseDisease remissionDrug KineticsElectronic Health RecordEmergency SituationEnsureEvaluationFamilyFoundationsFutureGenesGoalsHospital CostsHospitalizationInstitutionLength of StayMachine LearningMedical centerMental DepressionMental HealthMental disordersModalityModelingOutcomePatient CarePatient ReadmissionPatient-Focused OutcomesPatientsPediatric HospitalsPerformancePharmaceutical PreparationsPharmacogeneticsPopulationProcessPsychiatric therapeutic procedurePsychiatryQuality of lifeRecommendationResearchResearch TrainingRiskSelection for TreatmentsStructureTestingTrainingTreatment outcomeUnited StatesValidationWorkYouthanxiousbehavioral impairmentcase controlclinical carecostdemographicsdepressed patientdepressive symptomsgenetic informationhigh dimensionalityhospital readmissionimprovedineffective therapiesmachine learning algorithmmachine learning modelpatient populationpediatric patientspersonalized medicineprecision medicineprediction algorithmpredictive modelingreadmission riskresearch and developmentresponseside effecttargeted treatmenttreatment planningtreatment responsetreatment risk
项目摘要
Project Summary/Abstract
Mental health disorders, including anxiety and depression, are common in pediatric patients and significantly
impair behavioral function and quality of life. For those with severe illness, patients may be hospitalized for more
targeted treatment. Despite medication and/or therapy treatment, children and adolescents are frequently
readmitted into psychiatric care as a result of numerous reasons, including treatment ineffectiveness, medication
side effects, and issues with adhering to the treatment plan for the disorder. In fact, 25% of youth are readmitted
within one year of discharge. Additionally, treatment for these disorders can be long and costly to patients and
their families, especially if patients are hospitalized or re-hospitalized, with patients enduring multiple medication
trials before finding the best medication. In order to address these issues with pediatric psychiatric readmission,
this research is focused on the development of a machine learning algorithm to predict psychiatric readmission
in children and adolescents.
The first aim of the proposed research is to develop and establish machine learning algorithms to predict
psychiatric readmission within 30-, 90-, and 180-days of discharge in pediatric patients with anxiety and
depressive disorders using demographic, clinical, and pharmacogenetic data in the electronic health record.
Multiple algorithms will be evaluated to determine the best predictive model for each outcome. Important factors
influencing readmission and model performance for each outcome will be assessed and compared. Additionally,
this will be the first machine learning evaluation of psychiatric readmission in pediatric patients. The second aim
will assess the generalizability of our models using external pediatric psychiatric admission data from a
comparable institution. This validation is significant to ensure our model is applicable to new patients if this were
to be implemented clinically to improve patient care.
The exploratory third aim of this proposal will assess the ability of a model to select commonly prescribed
antidepressant medications that reduce readmission risk. The model will predict the risk of readmission if a
patient had been prescribed each antidepressant, which will be compared to current prescribing practices. This
will evaluate the impact of antidepressants on future psychiatric readmission, which could aid in medication
selection.
This project will be the first to evaluate psychiatric readmission in children and adolescents through a machine
learning approach, with the goal to reduce psychiatric readmission, thereby improving patient care and quality
of life. Further, this research will lay the foundation for future studies evaluating additional data modalities and
outcomes as we move towards more personalized treatments and recommendations for pediatric patients with
mental health disorders.
项目概要/摘要
心理健康障碍,包括焦虑和抑郁,在儿科患者中很常见,并且显着
损害行为功能和生活质量。对于病情严重的患者,可能需要住院治疗更长的时间
针对性治疗。尽管进行药物和/或治疗,儿童和青少年仍经常
由于多种原因,包括治疗无效、药物治疗等,重新进入精神科护理
副作用以及遵守疾病治疗计划的问题。事实上,25% 的青少年重新入学
出院后一年内。此外,这些疾病的治疗对于患者和患者来说可能是漫长且昂贵的。
他们的家人,特别是当患者住院或再次住院且患者正在承受多种药物治疗时
在找到最佳药物之前进行试验。为了解决儿科精神病再入院的这些问题,
这项研究的重点是开发机器学习算法来预测精神病再入院
在儿童和青少年中。
该研究的首要目标是开发和建立机器学习算法来预测
患有焦虑和焦虑症的儿科患者在出院 30、90 和 180 天内再次入院
使用电子健康记录中的人口统计、临床和药物遗传学数据来治疗抑郁症。
将评估多种算法以确定每种结果的最佳预测模型。重要因素
将评估和比较每个结果的再入院影响和模型表现。此外,
这将是首次对儿科患者的精神病再入院进行机器学习评估。第二个目标
将使用来自外部儿科精神病入院数据来评估我们模型的普遍性
同类机构。此验证对于确保我们的模型适用于新患者(如果是这样的话)具有重要意义。
应用于临床以改善患者护理。
该提案的探索性第三个目标将评估模型选择常用规定的能力
降低再入院风险的抗抑郁药物。该模型将预测再入院的风险,如果
患者已服用每种抗抑郁药,并将与当前的处方实践进行比较。这
将评估抗抑郁药对未来精神病再次入院的影响,这可能有助于药物治疗
选择。
该项目将是第一个通过机器评估儿童和青少年精神病再入院情况的项目
学习方法,旨在减少精神病患者的再入院,从而改善患者护理和质量
的生活。此外,这项研究将为未来评估其他数据模式和
随着我们为儿科患者提供更加个性化的治疗和建议,我们会取得更好的结果
心理健康障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan Andrew Poweleit其他文献
Ethan Andrew Poweleit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ethan Andrew Poweleit', 18)}}的其他基金
Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
- 批准号:
10710526 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Text-messaging Communication Micro-Intervention for Couples Coping with Advanced GI Cancer
针对晚期胃肠道癌症夫妇的短信沟通微干预
- 批准号:
10607060 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
In pursuit of a one-stop shop: a hybrid type 1 effectiveness-implementation trial of comprehensive tele-harm reduction for people who inject drugs
追求一站式服务:针对注射吸毒者的全面减少远程伤害的混合 1 型有效性实施试验
- 批准号:
10680988 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Design and implementation of a social cognitive theory-based medication adherence coaching intervention
基于社会认知理论的药物依从性辅导干预的设计与实施
- 批准号:
10644251 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别: