Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
基本信息
- 批准号:10606508
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcidsAddressAlcoholsAmidesAminesBindingBiologicalCarbamatesChargeChemical StructureChemistryCompensationComplexDevelopmentEnvironmentEquilibriumExcisionFailureFamilyFutureGoalsGrowthHealthHumanHydrogen BondingHydroxyl RadicalKnowledgeLigandsMentorshipMetalsMethodologyMethodsModificationMolecularNational Institute of General Medical SciencesOutcomePalladiumPharmaceutical ChemistryPostdoctoral FellowProductionPyridonesReactionResearchResearch DesignResearch InstituteRoleSiteStructureSynthesis ChemistryTransition ElementsValidationWorkalcohol freebasecarbenecarboxylatecarboxylationcatalystchelationdehydrogenationdeprotonationdesigndriving forcefunctional groupmethyl groupnovelnovel therapeuticsprofessorsmall moleculesmall molecule therapeuticssuccesstool
项目摘要
PROJECT SUMMARY/ABSTRACT
Subtle structural modifications have the potential to dramatically alter the biological activity of small
molecules. Consequently, the development of synthetic methods that allow for selective molecular editing has
the potential to greatly accelerate the design and synthesis of novel therapeutics. Transition-metal catalyzed C–
H functionalization is a particularly compelling approach, as it circumvents the requirement for prior activation at
the site of functionalization. However, C–H activation typically requires a high degree of preorganization of the
agostic interaction between the metal and the target bond, usually through coordination of the metal to a directing
group. Unfortunately, efforts to use common functional groups and commonly used protecting groups to direct
C(sp3)–H activation have met with limited success. Instead, specially designed directing groups are often
necessary, limiting the synthetic utility of existing C–H functionalization methodologies.
In the proposed research, ligands will be designed to enable the use of common, weakly coordinating L-type
donors, such as alcohols and carbamates, as directing groups for C(sp3)–H activation. We hypothesized that
two main factors are responsible for the failure of existing ligands to promote these reactions: the intrinsically
weak binding of these functional groups to Pd, and the focus on L,X chelates in recent ligand design efforts,
which are expected to disfavor agostic complex formation with L-type directing groups due to the lack of charge
balance within the complex. Thus, we propose to design novel bis-anionic ligands, structures that are currently
underexplored in C–H activation chemistry, containing an internal base that can participate in C–H activation via
concerted metalation-deprotonation. In order to compensate for the weak coordination of the desired directing
groups to Pd, the proposed ligands will be designed to stabilize substrate-Pd complexes through the secondary
coordination sphere by serving as H-bond acceptors or donors matched to the desired directing group. In Aim 1,
which is strongly supported by preliminary results, we will develop ligands that can enable alcohol-directed
C(sp3)–H functionalizations through two reaction manifolds: C–H dehydrogenation reactions to form allylic
alcohols, which are exceedingly versatile synthetic intermediates, and direct C(sp3)–H arylations. Aim 2 will
extend this ligand design strategy to develop α-arylations of Boc-amines, with a particular focus on methylene
C–H activation in saturated N-Boc azacycles. The successful realization of these aims will provide powerful new
synthetic methodologies, directly facilitating the design and synthesis of novel therapeutics. In addition, validation
of the underlying hypotheses and ligand design strategy will afford a conceptual advance that will contribute to
the continued development of the field of C–H activation.
The proposed work will be carried out under the mentorship of Professor Jin-Quan Yu, a preeminent scholar
in the field of transition-metal catalyzed C–H functionalization. The intellectual environment in the Yu lab and
The Scripps Research Institute is ideally suited to enable the successful execution of these aims.
项目概要/摘要
微妙的结构修饰有可能显着改变小分子的生物活性
经过测试,允许选择性分子编辑的合成方法的发展已经取得进展。
极大地加速新型疗法的设计和合成的潜力。
H 功能化是一种特别引人注目的方法,因为它规避了预先激活的要求
然而,C-H 激活通常需要高度的预组织。
金属和目标键之间的无控制相互作用,通常通过金属与定向键的配位来实现
不幸的是,努力使用常见的官能团和常用的保护基团来指导。
C(sp3)–H 的激活效果有限,相反,专门设计的导向基团通常是有效的。
必要的,限制了现有C-H官能化方法的合成效用。
在拟议的研究中,配体将被设计为能够使用常见的弱配位 L 型
供体,例如醇和氨基甲酸酯,作为 C(sp3)–H 激活的指导基团。
现有配体未能促进这些反应的两个主要因素是:本质上
这些官能团与 Pd 的结合较弱,并且在最近的配体设计工作中重点关注 L,X 螯合物,
由于缺乏电荷,预计不利于与 L 型导向基团形成无望复合物
因此,我们建议设计新颖的双阴离子配体,即目前的结构。
在 C-H 活化化学中尚未得到充分探索,包含可以通过以下方式参与 C-H 活化的内部碱基:
协调的金属化-去质子化,以补偿所需定向的弱协调。
基团到 Pd 上,所提出的配体将被设计为通过次级稳定基底-Pd 复合物
在目标 1 中,通过充当与所需指导基团相匹配的氢键受体或供体来实现配位范围。
初步结果有力支持了这一点,我们将开发能够实现醇定向的配体
通过两个反应流形进行 C(sp3)–H 官能化:C–H 脱氢反应形成烯丙基
醇,这是一种用途极其广泛的合成中间体,并且可以直接进行 C(sp3)–H 芳基化反应。
扩展该配体设计策略以开发 Boc 胺的 α-芳基化,特别关注亚甲基
饱和 N-Boc 氮杂环中的 C-H 激活这些目标的成功实现将提供强大的新功能。
合成方法学,直接促进新疗法的设计和合成。
基本假设和配体设计策略的研究将提供概念上的进步,这将有助于
C-H激活领域的持续发展。
拟议的工作将在杰出学者于金泉教授的指导下进行
于实验室的智力环境和过渡金属催化的C-H功能化领域。
斯克里普斯研究所非常适合成功实现这些目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Aaron Strassfeld其他文献
Daniel Aaron Strassfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
线粒体丙酮酸转运载体调控血小板活化及动脉血栓形成的作用和机制研究
- 批准号:82300362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
n-3多不饱和脂肪酸重塑Drp1介导的骨骼肌线粒体稳态改善老年肌少症的机制研究
- 批准号:82304114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
中药补骨脂成分次苷酸查尔酮靶向TAOK1改善肿瘤恶病质肌萎缩的作用研究
- 批准号:82374085
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
去势环境下CAF来源的CREB3L4通过增强癌细胞脂肪酸合成促进前列腺癌转移的机制研究
- 批准号:82303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Male pesticide exposure, reproductive health and epigenetics
男性农药接触、生殖健康和表观遗传学
- 批准号:
10733537 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
New Catalysts and Strategies for Selective C–H Functionalization and Cycloaddition Reactions
选择性 C–H 官能化和环加成反应的新催化剂和策略
- 批准号:
10622182 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
- 批准号:
10606798 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: