High-throughput functional analysis and clinical relevance of all possible variants of a gene

基因所有可能变异的高通量功能分析和临床相关性

基本信息

  • 批准号:
    10601908
  • 负责人:
  • 金额:
    $ 39.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-02 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Modern pharmaceuticals have greatly improved the quality of life for many patients suffering a variety of illnesses. Unfortunately, among the 17 most commonly prescribed drugs, only 6 are highly effective for most patients, 5 have a modest effect, and 6 show little clinical effect. Worse still, unwanted illness and death from treatment of patients with the incorrect drug or dosage causes over 275,000 unnecessary deaths annually in the United States, making it the 3rd-leading cause of death. Genomic screening can minimize the loss of lives by clearly defining the cause-and-effect between a patient’s genetic sequence and their disease. Many gene sequences are known to affect a person’s response to drugs. The FDA lists over 450 warnings or recommendations for drug use based on possible genetic variants in specific genes. Other public databases list ~60,000 “characterized” gene variants, but their importance is often unknown. Moreover, these variants represent a vanishingly small fraction of >900 million known human genetic variations. The vast number of “Variants of Uncertain Significance” (VUS) present potentially life-altering medical, ethical, legal, and societal complications. Some cause drugs to be more or less effective in different patients. Others can stimulate growth of cancer cells or make those cells resistant to chemotherapies. To understand the biological impact of gene variants, Heligenics has developed the GigaAssay™ technology to measure the functional effect of all variations within any selected gene. In contrast to similar technologies, the GigaAssay reports the activity of each variant of the gene, with high accuracy and reproducibility. In this proposal, we plan to improve the GigaAssay and show its feasibility for detection and analysis of gene variants that have clinical importance. In Aim 1 we will create a battery of GigaAssay cell lines and readouts for rapid analysis of several functional cellular activities. In Aim 2 we will demonstrate that the GigaAssay can detect gene variants that cause resistance to an FDA-approved chemotherapy drug. This work will directly address numerous goals of the “Illuminating the Druggable Genome” project of the NIH. Future plans include expanding the number of GigaAssays, increasing the speed or number of genes that can be studied, and partnering with drug developers and clinical trial managers to identify the optimal drug for each patient, based on his or her genetic variants.
现代药物极大地改善了许多患有各种疾病的患者的生活质量。 不幸的是,在 17 种最常用的处方药中,只有 6 种对大多数患者非常有效,5 种 效果有限,而且 6 例几乎没有临床效果,更糟糕的是,治疗过程中会导致不必要的疾病和死亡。 在美国,服用错误药物或剂量的患者每年导致超过 275,000 例不必要的死亡 州,使其成为第三大死因。 基因组筛查可以通过明确定义患者的症状之间的因果关系来最大程度地减少生命损失 已知许多基因序列会影响人对药物的反应。 FDA 根据特定人群中可能的基因变异列出了 450 多种药物使用警告或建议 其他公共数据库列出了约 60,000 个“特征化”基因变体,但它们的重要性往往是未知的。 此外,这些变异仅代表超过 9 亿已知人类遗传变异中的极小一部分。 大量的“意义不确定的变体”(VUS)呈现出潜在的改变生活的医学、伦理、 一些法律和社会并发症会导致药物对不同的患者或多或少有效。 刺激癌细胞生长或使这些细胞对化疗产生抵抗力。 为了了解基因变异的生物学影响,Heligenics 开发了 GigaAssay™ 技术 测量任何选定基因内所有变异的功能效果与类似技术相比, GigaAssay 报告基因每个变体的活性,具有高精度和可重复性。 在本提案中,我们计划改进 GigaAssay 并展示其用于基因检测和分析的可行性 在目标 1 中,我们将创建一组 GigaAssay 细胞系和读数。 在目标 2 中,我们将证明 GigaAssay 可以检测多种功能性细胞活动。 导致对 FDA 批准的化疗药物产生耐药性的基因变异。 这项工作将直接实现 NIH“阐明可药物基因组”项目的众多目标。 未来的计划包括扩大 GigaAssay 的数量、提高速度或基因数量 进行研究,并与药物开发商和临床试验管理者合作,以确定每种药物的最佳药物 患者,根据他或她的基因变异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Schiller其他文献

Martin Schiller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
Investigating the Effect of FLASH-Radiotherapy on Tumor and Normal Tissue
研究 FLASH 放射治疗对肿瘤和正常组织的影响
  • 批准号:
    10650476
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
  • 批准号:
    10638404
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了