Molecular Mechanisms of Candida auris Adhesion to Abiotic Surfaces

耳念珠菌粘附非生物表面的分子机制

基本信息

  • 批准号:
    10601671
  • 负责人:
  • 金额:
    $ 4.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Abstract Candida auris is an emerging fungal pathogen responsible for invasive, often multidrug-resistant infections and outbreaks worldwide. Unlike for many other fungal pathogens, C. auris infection is primarily nosocomial, driven by the propensity of C. auris to robustly colonize medical devices, implants, and abiotic surfaces that are proximal to patient quarters. C. auris can survive on abiotic surfaces for weeks, and many strains are resistant to commonly used antifungals and disinfectants, hindering decontamination efforts. The importance of this colonization to C. auris disease spread is demonstrated by intervention case studies associating reduction of infection incidence with removal of colonized fomites. C. auris can also form biofilms on surfaces, likely contributing to its resistance to decontamination. On a molecular scale, these processes require the initial first step of individual fungal cells physically attaching to a surface. While the regulation of attachment has been explored to a limited extent in related fungal species, no mechanistic studies have investigated the molecular machinery governing initial attachment in C. auris. Furthermore, while C. auris encodes genes homologous to characterized Candida albicans ALS and IFF/HYR family adhesins, proteins which have been implicated in attachment in other fungal species, our findings indicate none of these genes substantially contributes to attachment to abiotic surfaces in C. auris. Instead, we have identified B9J08_001458, a novel class of adhesin specifically encoded by C. auris with no characterized homologs. Deletion of B9J08_001458 substantially and significantly reduces C. auris adhesion. Furthermore, our preliminary findings suggest natural transcriptional variation of B9J08_001458 among C. auris isolates is linked to natural variation in adhesive potential. The goal of this proposal is to identify the functional and regulatory mechanisms of C. auris adhesion and explain the variability in adhesion in different C. auris clinical isolates. Our hypothesis is that C. auris regulates an adhesive cell surface profile primarily through expression of the putative novel adhesin B9J08_001458, and that transcriptional control of this adhesin explains adhesive variation amongst C. auris isolates. To address this hypothesis, we will leverage our global genetic and transcriptomic datasets to identify transcription factors targeting B9J08_001458. Our findings also suggest B9J08_001458 is regulated through the SWI/SNF chromatin remodeling complex; we will characterize this layer of transcriptional regulation by comparing chromatin states between wild type cells and mutants deficient in SWI/SNF function. We will then investigate the impact of genetic variants driving differential expression of B9J08_001458 amongst diverse C. auris isolates using genome wide association studies. The findings of this proposal will provide a scientific foundation for the rational development of decontamination and infection control protocols against C. auris, potentially mitigating the disease burden of this fungus.
抽象的 耳念珠菌是一种新兴的真菌病原体,可导致侵袭性、通常具有多重耐药性的感染和 世界范围内爆发。与许多其他真菌病原体不同,耳念珠菌感染主要是医院内的、驱动的 耳念珠菌倾向于在医疗设备、植入物和非生物表面上大量繁殖,这些设备 靠近病人宿舍。耳念珠菌可以在非生物表面存活数周,并且许多菌株具有抗药性 常用的抗真菌剂和消毒剂,阻碍了净化工作。这一点的重要性 通过干预案例研究证明了耳念珠菌疾病传播的定植与减少相关 清除定植污染物后的感染发生率。耳念珠菌也可能在表面形成生物膜 有助于其抵抗去污的能力。在分子尺度上,这些过程需要首先 单个真菌细胞物理附着到表面的步骤。虽然附件的规定已经 在相关真菌物种中的探索程度有限,没有机制研究调查了分子 控制耳念珠菌初始附着的机制。此外,虽然 C. auris 编码的基因与 鉴定了白色念珠菌 ALS 和 IFF/HYR 家族粘附素,这些蛋白质与 在其他真菌物种中的附着,我们的研究结果表明这些基因都没有实质上有助于 耳念珠菌 (C. auris) 中非生物表面的附着。相反,我们发现了 B9J08_001458,一类新型粘附素 由 C. auris 特异性编码,没有特征同源物。大幅删除 B9J08_001458 以及 显着降低耳念珠菌粘附。此外,我们的初步研究结果表明自然转录 耳念珠菌分离株中 B9J08_001458 的变异与粘附潜力的自然变异有关。目标 该提案的目的是确定耳念珠菌粘附的功能和调节机制,并解释 不同耳念珠菌临床分离株的粘附变异性。我们的假设是 C. auris 调节 粘附细胞表面轮廓主要通过假定的新型粘附素 B9J08_001458 的表达, 这种粘附素的转录控制解释了耳念珠菌分离株之间的粘附变异。 为了解决这个假设,我们将利用我们的全球遗传和转录组数据集来识别 靶向 B9J08_001458 的转录因子。我们的研究结果还表明 B9J08_001458 是通过 SWI/SNF 染色质重塑复合物;我们将通过以下方式来表征这一层转录调控 比较野生型细胞和 SWI/SNF 功能缺陷的突变体之间的染色质状态。我们随后将 研究驱动 B9J08_001458 在不同 C. 中差异表达的遗传变异的影响。 使用全基因组关联研究分离耳念珠菌。该提案的研究结果将为 为合理制定针对耳念珠菌的净化和感染控制方案奠定了基础, 有可能减轻这种真菌的疾病负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darian Jay Santana其他文献

Darian Jay Santana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
  • 批准号:
    82305302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
  • 批准号:
    82360298
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
  • 批准号:
    82371641
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
  • 批准号:
    10638243
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
  • 批准号:
    10735701
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
  • 批准号:
    10637562
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
  • 批准号:
    10798646
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
  • 批准号:
    10668030
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了