Supplement to Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for EnhancedBioremediation of PFASs Using Supercritical Fluid Chromatography/Mass Spectrometry
使用超临界流体色谱/质谱法增强 PFAS 生物修复功能化混合纳米材料的模型辅助设计和集成的补充
基本信息
- 批准号:10601888
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-04 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAftercareAmino AcidsAnaerobic BacteriaBindingBiodegradationBiologicalBioremediationsBloodCarbonChemicalsCommunitiesDegradation PathwayDevelopmentDockingEnvironmentEnvironmental PollutionEnzymesEvolutionExcisionExposure toFluorineGenesGenetic TranscriptionGoalsHazardous ChemicalsHealthHumanHybridsHydrogen PeroxideIndustrializationIronKidneyKineticsKnowledgeLinkMalignant NeoplasmsMalignant neoplasm of liverMass Spectrum AnalysisMeasurableMeasuresMetagenomicsMetalsMicrobiologyMineralsModelingMolecularNMR SpectroscopyNanotechnologyNon-Insulin-Dependent Diabetes MellitusOutcomeOxidation-ReductionOxidesPathway interactionsPersonsPoisonPoly-fluoroalkyl substancesProductionPropertyPublic HealthResearchResolutionRiskSiteSourceStructureSupercritical Fluid ChromatographySystemTechniquesTechnologyTestingToxic effectToxicokineticsTrainingWorkcatalystconsumer productdehalogenationdesigndrinking waterefficacy testingexposed human populationgrapheneground waterimprovedin silicoinnovationliver injurymicrobialmicrobial communitymicrobial genomemineralizationmolecular dynamicsmolecular modelingnanonanomaterialsnovelpreventrRNA Genesremediationsubstance usetitanium dioxidetooltranscriptomicsultraviolet irradiation
项目摘要
ABSTRACT
Global public health concern is growing over per- and polyfluoroalkyl substances (PFASs) toxicity,
environmental persistence, and potential to bioaccumulate in humans and wildlife. Nearly every person who has
been tested for PFASs shows measurable levels in their blood resulting from contamination of the environment
and continued use in consumer products and industrial applications. In particular, drinking water appears to be
the major source of PFAS exposure for people living near contaminated sites. Importantly, some PFASs have been
linked to liver damage, developmental impacts, and several cancers (e.g., kidney, testicular). Environmental
remediation is urgently needed, but efforts are hampered by the extreme persistence of the carbon-fluorine bond.
Biodegradation typically involves only the non-fluorinated components of polyfluorinated PFASs, resulting in the
creation of shorter-chain perfluorinated acids that are more persistent and mobile. Complete mineralization has
not been demonstrated. Abiotic treatment technologies can be more effective but require extremely high energy
inputs, and the degradation mechanisms are poorly understood. There is a critical need for a treatment
technology with lower energy requirements, and for enhanced degradation pathways that efficiently mineralize
PFASs without formation of perfluorinated acids that persist after treatment.
The overarching goal of this proposal is to develop an innovative nanomaterial-biological strategy to tackle
the challenge of PFAS biodegradation. Our central hypothesis is that pretreatment by tailored nanomaterials can
facilitate transformation of structurally diverse PFASs to achieve more efficient and complete biodegradation.
Our previous work has shown that functionalized nanohybrid catalysts incorporating reduced graphene oxide
(rGO) and nano zerovalent iron (nZVI) can successfully initiate degradation of long-chain PFASs. Here, we will
employ this abiotic transformation as an innovative pretreatment to unlock the biodegradation of PFASs.
Leveraging our expertise in molecular modeling and ‘omics’ techniques, we will test and tailor the ability of
microbial communities to more efficiently degrade pretreated PFASs and their initial degradation products. All
degradation products will be characterized by high-resolution mass spectrometry and 19F-nuclear magnetic
resonance spectroscopy to reveal the mechanisms that enable this nano-bioremediation strategy. This research
will tackle a pressing environmental contamination problem with three complementary specific aims:
Aim 1: Synthesize multifunctional redox-active nanohybrid materials and evaluate their catalytic
properties for PFAS degradation (dehalogenation, degradation of long-chains to short-chains). We will
synthesize and characterize two multifunctional and hierarchical carbon-metal nanohybrids: (i) redox-active
reduced graphene oxide nano zerovalent iron (rGO–nZVI) and (ii) photocatalytic rGO-nZVI- titanium dioxide
(TiO2) or rGO-nZVI-TiO2, and test the efficacy and extent to which they can transform and/or degrade PFASs
under UV irradiation and/or H2O2 exposure. We will identify the PFAS degradation products and elucidate the
associated chemical degradation pathways, kinetics, and mechanisms.
Aim 2: Assess the efficacy of biodegradation and complete mineralization of PFASs and degradation
products by enriched microbial cultures. Mixed anaerobic microbial communities that include known
dehalogenators will be cultured with a range of short- and long-chain untreated and nanomaterial-treated PFASs
to measure the removal efficacy and mineralization of PFASs. Microbial community structure and activity will be
measured by 16s rRNA gene abundance and transcription levels of known reductive dehalogenases genes.
Metagenomics and transcriptomics will be applied to elucidate microbial genomes and reductive defluorination
pathways that are involved in PFASs biodegradation.
Aim 3: Perform molecular modeling to discover, detect, and refine enzymatic biodegradation for
structurally diverse PFASs. In silico tools, including molecular docking and molecular dynamics, have shown
powerful potential for identifying PFAS-biomolecule interactions that can inform our understanding of PFAS
toxicokinetics and toxicodynamics. Here, molecular modeling approaches will be used to identify strong
interactions between structurally diverse PFASs and enzymes that have shown potential for degradation of
persistent halogenated substances. The specific interactions between PFASs and amino acid residues in these
enzymes will be identified; strategies, including community composition and directed enzyme evolution, will be
investigated to allow tuning of molecular interactions to improve degradability of PFASs.
Expected Outcomes: Our integrative approach has significant potential to advance our understanding of PFAS
redox transformation mechanisms and biodegradation pathways. By combining our expertise in nanomaterial
design, microbiology, chemical characterization, and molecular modeling, we will enable the design of a
synergistic system to completely degrade, defluorinate, and mineralize diverse PFASs. This novel nano-
bioremediation approach has the potential for inclusion and application within the treatment train for both PFASs-
contaminated groundwater and drinking water sources. Knowledge on the PFASs degradation mechanisms at
the molecular level will substantially advance the environmental remediation of this ubiquitous class of
contaminants, and prevent further human exposure to these bioaccumulative and hazardous chemicals.
抽象的
全球公共卫生对全氟烷基物质和多氟烷基物质 (PFAS) 的毒性日益关注,
环境持久性,以及在人类和野生动物体内生物累积的潜力,几乎每个人都有。
经检测,血液中的 PFAS 含量可测量到,这是由于环境污染造成的
以及在消费品和工业应用中的持续使用,特别是饮用水。
居住在受污染地点附近的人们接触 PFAS 的主要来源。重要的是,一些 PFAS 已被污染。
与肝脏损伤、发育影响和多种癌症(例如肾癌、睾丸癌)有关。
迫切需要进行修复,但碳氟键的极端持久性阻碍了修复工作。
生物降解通常仅涉及多氟 PFAS 的非氟化成分,从而导致
更持久和更流动的短链全氟酸的产生已经实现了完全矿化。
非生物处理技术可能更有效,但需要极高的能量。
投入,并且降解机制知之甚少,迫切需要一种治疗方法。
能源需求较低的技术,以及增强有效矿化的降解途径
PFAS 不会形成处理后持续存在的全氟酸。
该提案的总体目标是开发一种创新的纳米材料生物策略来解决
我们的中心假设是,通过定制纳米材料进行预处理可以实现 PFAS 生物降解。
促进结构多样的 PFAS 的转化,以实现更高效、更彻底的生物降解。
我们之前的工作表明,包含还原氧化石墨烯的功能化纳米杂化催化剂
(rGO) 和纳米零价铁 (nZVI) 可以成功引发长链 PFAS 的降解。
利用这种非生物转化作为创新的预处理来释放 PFAS 的生物降解性。
利用我们在分子建模和“组学”技术方面的专业知识,我们将测试和定制以下能力:
微生物群落更有效地降解预处理的 PFAS 及其初始降解产物。
降解产物将通过高分辨率质谱和 19F 核磁进行表征
共振光谱揭示了实现这种纳米生物修复策略的机制。
将通过三个互补的具体目标解决紧迫的环境污染问题:
目标1:合成多功能氧化还原活性纳米杂化材料并评估其催化性能
PFAS 降解(脱卤、长链降解为短链)的特性。
合成并表征了两种多功能和分层碳金属纳米杂化物:(i)氧化还原活性
还原氧化石墨烯纳米零价铁 (rGO–nZVI) 和 (ii) 光催化 rGO-nZVI-二氧化钛
(TiO2) 或 rGO-nZVI-TiO2,并测试它们转化和/或降解 PFAS 的功效和程度
在紫外线照射和/或 H2O2 暴露下,我们将识别 PFAS 降解产物并阐明其降解产物。
相关的化学降解途径、动力学和机制。
目标 2:评估 PFAS 的生物降解和完全矿化以及降解的功效
富含混合厌氧微生物群落的产品,其中包括已知的微生物群落。
脱卤剂将与一系列未经处理和纳米材料处理的短链和长链 PFAS 一起培养
测量 PFAS 的去除效果和矿化作用。
通过已知还原脱卤酶基因的 16s rRNA 基因丰度和转录水平来测量。
宏基因组学和转录组学将用于阐明微生物基因组和还原脱氟
PFAS 生物降解所涉及的途径。
目标 3:进行分子建模以发现、检测和完善酶生物降解作用
计算机工具(包括分子对接和分子动力学)显示了结构多样的 PFAS。
识别 PFAS-生物分子相互作用的强大潜力可以帮助我们了解 PFAS
在这里,将使用分子建模方法来识别强毒物动力学和毒物动力学。
结构多样的 PFAS 和酶之间的相互作用已显示出降解
PFAS 与这些物质中的氨基酸残基之间的特定相互作用。
将确定酶策略,包括群落组成和定向进化;
研究人员通过调整分子相互作用来提高 PFAS 的降解性。
预期成果:我们的综合方法在增进我们对 PFAS 的理解方面具有巨大潜力
氧化还原转化机制和生物降解途径结合我们在纳米材料方面的专业知识。
设计、微生物学、化学表征和分子建模,我们将能够设计
协同系统可完全降解、脱氟和矿化多种 PFAS。
生物修复方法有可能被纳入和应用到 PFAS 的治疗系列中。
受污染的地下水和饮用水源的 PFAS 降解机制的知识。
分子水平将大大推进此类普遍存在的环境修复
污染物,并防止人类进一步接触这些生物累积性和危险化学品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diana S Aga其他文献
Diana S Aga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diana S Aga', 18)}}的其他基金
Resolving Relationships: Determining the Impacts of Environmental Matrices on the Ionization Efficiencies of Per and Polyfluoroalkyl Substances (PFAS) for the Development of a Semi-Quantitation Model
解决关系:确定环境基质对全氟烷基物质和多氟烷基物质 (PFAS) 电离效率的影响,以开发半定量模型
- 批准号:
10580971 - 财政年份:2022
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10515650 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10156782 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10728494 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10319174 - 财政年份:2021
- 资助金额:
$ 2.75万 - 项目类别:
Bioactivation of PBDEs by Human Cytochrome P-450
人细胞色素 P-450 对 PBDE 的生物活化
- 批准号:
8285111 - 财政年份:2012
- 资助金额:
$ 2.75万 - 项目类别:
Bioactivation of PBDEs by Human Cytochrome P-450
人细胞色素 P-450 对 PBDE 的生物活化
- 批准号:
8447016 - 财政年份:2012
- 资助金额:
$ 2.75万 - 项目类别:
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Advancing Development of Novel Immunotherapy for Chemotherapy-induced Peripheral Neuropathy (CIPN)
推进化疗引起的周围神经病变 (CIPN) 的新型免疫疗法的发展
- 批准号:
10588384 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别:
Metabolic reprogramming of endothelial precursor cells in subretinal fibrosis
视网膜下纤维化中内皮前体细胞的代谢重编程
- 批准号:
10752924 - 财政年份:2023
- 资助金额:
$ 2.75万 - 项目类别: