Contextualizing and Addressing Population-Level Bias in Social Epigenomics Study of Asthma in Childhood

儿童哮喘社会表观基因组学研究中的背景分析和解决人群水平偏差

基本信息

  • 批准号:
    10593797
  • 负责人:
  • 金额:
    $ 30.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-26 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

SUMMARY 6.1 million children in the US currently suffer from asthma, making it the most common chronic disease experienced during childhood. Significant racial and ethnic disparities exist with African American (AA) children being 8 times more likely to die of asthma relative to non-Hispanic white children. Genetic, environmental, and psychosocial factors are believed to jointly cause the disease by affecting biological pathways related to asthma pathophysiology. Within our parent R01 award (5R01MD015409) – abbreviated as the “Stress, Epigenome and Asthma” (SEA) study, we hypothesize that exposure to psychosocial stress in childhood may act at a mechanistic (biological) level impacting the function of our genome by epigenetic modifications. To test our hypothesis, we are collecting large amounts of data in a prospective social epigenomics study of asthmatic AA children/families including high-resolution epigenetic profiles, comprehensive social determinants of health (SDOH), and chronic stress information. While we propose within the parent award to make the ‘omics’ dataset ready for downstream AI/ML approaches we recognize the need to also prepare our SDOH and chronic stress data for similar applications which is however outside of the scope of the parent award. Specifically, we argue the SEA study data will greatly benefit from use of AI/ML techniques such as ensemble models that are capable of naively capturing differential outcomes across combinations of features. However, given that exposure to chronic stressors is tied to a child’s social environment, to develop reliable models will require significant efforts to prepare and contextualize the collected data. We hypothesize this can be accomplished through the linking of collected social and clinical data with disparate population level datasets. Our supplement will address two aims: 1) We will develop novel quantitative measures to define the representativeness of study participant data. By utilizing publicly available population-level data (e.g., Census data) we will develop a framework to compare the sociodemographic profile of study participations against an expected distribution of individuals in a geographic reference area. And, by doing so, identify subgroups that may misaligned to the community on which results are expected to generalize. By further linking this alignment to data quality measures (e.g., missingness), we can create a standardized tool to convey the dataset’s intrinsic biases on population subsets to aid in designing analyses and interpreting AI/ML model results; and 2) We will extend traditional AI/ML imputation preprocessing methods to account for socioeconomic factors. Understanding that chronic stress is deeply interconnected with children’s social environment and that sampling is not balanced by geographic region, current imputation estimates for data in subgroups with a high degree of missingness, would be primarily driven by relationships found in cohorts with more complete information. We hypothesize, that population-level data can be integrated into novel weighting techniques for multiple imputation models to better account for socioeconomic similarity of patients. In turn, providing more precise estimates of missing data for smaller population subgroups.
概括 目前美国有 610 万儿童患有哮喘,使其成为最常见的慢性疾病 非裔美国 (AA) 儿童在童年时期经历过显着的种族和民族差异。 非西班牙裔白人儿童死于相对哮喘的可能性是非西班牙裔白人儿童的 8 倍。 据信心理社会因素通过影响与哮喘相关的生物途径共同导致该疾病 在我们的母 R01 奖 (5R01MD015409) 中 – 缩写为“压力、表观基因组和 哮喘”(SEA)研究中,我们发现童年时期暴露于社会心理压力可能会产生机械性影响 (生物)水平通过表观遗传修饰影响我们的基因组功能为了检验我们的假设。 正在对哮喘 AA 儿童/家庭进行前瞻性社会表观基因组学研究,收集大量数据 包括高分辨率表观遗传图谱、健康的综合社会决定因素 (SDOH) 和慢性病 虽然我们在母奖中建议为下游做好“组学”数据集的准备。 通过 AI/ML 方法,我们认识到还需要为类似的情况准备 SDOH 和慢性压力数据 然而,这超出了家长奖励的范围,具体来说,我们认为 SEA 研究。 数据将极大地受益于人工智能/机器学习技术的使用,例如能够简单地预测的集成模型 然而,考虑到慢性病的暴露,捕捉不同特征的不同结果。 压力源与儿童的社会环境有关,开发可靠的模型需要付出巨大的努力 我们勇敢地说,这可以通过链接来完成。 我们的补充材料将通过不同的人口水平数据集收集社会和临床数据,以实现两个目标: 1) 我们将开发新的定量方法来定义研究参与者数据的代表性。 公开利用现有的人口数据(例如人口普查数据),我们将开发一个框架来比较 研究参与的社会人口学概况与地理区域中个人的预期分布 并且,通过这样做,可以识别出可能与结果所在社区不一致的子组。 通过进一步将这种一致性与数据质量度量(例如缺失)联系起来,我们可以 创建一个标准化工具来传达数据集对人口子集的内在偏差,以帮助设计 分析和解释 AI/ML 模型结果;2) 我们将扩展传统的 AI/ML 插补预处理 解释社会经济因素的方法 了解慢性压力与社会经济因素密切相关。 儿童的社会环境以及抽样不按地理区域平衡,目前的估算 对高度缺失的子组中数据的估计将主要由关系驱动 我们在拥有更完整信息的队列中发现,可以整合人口层面的数据。 多种插补模型的新颖加权技术,以更好地考虑社会经济相似性 反过来,为较小的人群亚组提供更精确的缺失数据估计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elin Grundberg其他文献

Elin Grundberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elin Grundberg', 18)}}的其他基金

Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
  • 批准号:
    10053566
  • 财政年份:
    2020
  • 资助金额:
    $ 30.19万
  • 项目类别:
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
  • 批准号:
    10393705
  • 财政年份:
    2020
  • 资助金额:
    $ 30.19万
  • 项目类别:
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
  • 批准号:
    10610862
  • 财政年份:
    2020
  • 资助金额:
    $ 30.19万
  • 项目类别:
Ethical Implementation of Social Epigenomics Research on Asthma in a Health Disparity Population
健康差异人群哮喘社会表观基因组学研究的伦理实施
  • 批准号:
    10593404
  • 财政年份:
    2020
  • 资助金额:
    $ 30.19万
  • 项目类别:
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
  • 批准号:
    10247824
  • 财政年份:
    2020
  • 资助金额:
    $ 30.19万
  • 项目类别:
Environmental Exposures, AHR Activation, and Placental Origins of Development
环境暴露、AHR 激活和胎盘发育起源
  • 批准号:
    10413959
  • 财政年份:
    2018
  • 资助金额:
    $ 30.19万
  • 项目类别:
Environmental Exposures, AHR Activation, and Placental Origins of Development
环境暴露、AHR 激活和胎盘发育起源
  • 批准号:
    10176489
  • 财政年份:
    2018
  • 资助金额:
    $ 30.19万
  • 项目类别:

相似海外基金

Adapting and evaluating an integrated intervention for adolescent substance use and pain during oral surgery
调整和评估口腔手术期间青少年药物使用和疼痛的综合干预措施
  • 批准号:
    10669030
  • 财政年份:
    2021
  • 资助金额:
    $ 30.19万
  • 项目类别:
Penn Innovation in Suicide Prevention Implementation Research (INSPIRE) Center
宾夕法尼亚大学预防自杀创新实施研究 (INSPIRE) 中心
  • 批准号:
    10675036
  • 财政年份:
    2021
  • 资助金额:
    $ 30.19万
  • 项目类别:
Penn Innovation in Suicide Prevention Implementation Research (INSPIRE) Center
宾夕法尼亚大学预防自杀创新实施研究 (INSPIRE) 中心
  • 批准号:
    10487432
  • 财政年份:
    2021
  • 资助金额:
    $ 30.19万
  • 项目类别:
Adapting and evaluating an integrated intervention for adolescent substance use and pain during oral surgery
调整和评估口腔手术期间青少年药物使用和疼痛的综合干预措施
  • 批准号:
    10458117
  • 财政年份:
    2021
  • 资助金额:
    $ 30.19万
  • 项目类别:
Adapting and evaluating an integrated intervention for adolescent substance use and pain during oral surgery
调整和评估口腔手术期间青少年药物使用和疼痛的综合干预措施
  • 批准号:
    10301847
  • 财政年份:
    2021
  • 资助金额:
    $ 30.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了