Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
基本信息
- 批准号:10594240
- 负责人:
- 金额:$ 24.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlveolarArchitectureArtificial IntelligenceBiologicalBiological MarkersCellsCharacteristicsChildChildhoodChildhood RhabdomyosarcomaClassificationClinicalClinical DataCommunitiesComputational algorithmComputer AnalysisDataData AnalysesData SetDevelopmentDiagnosisDiseaseElementsFailureFundingGenomicsGoalsGrantHistologicHistologyImageIndividualInterdisciplinary StudyLeadMalignant - descriptorMalignant Childhood NeoplasmMalignant NeoplasmsMeasurementModelingModernizationMorphologyMuscleParentsPathologicPathologistPatient-Focused OutcomesPatientsPediatric Oncology GroupPerformancePhysiciansPlayProspective StudiesRecurrent diseaseResearchResearch InstituteResolutionRhabdomyosarcomaRiskRoleSoft Tissue NeoplasmsSoft tissue sarcomaSuggestionSurvival RateTechnologyTexasTissuesUnited Statesarmbasebonecancer preventioncell typeclinical carecohortdata integrationdeep learningdeep learning modeldesigndigital imagingdisorder riskexperiencehigh riskimage processingimprovedindividual patientindividualized medicineinformatics toolinsightmodel developmentnoveloutcome predictionpathology imagingpatient prognosispatient stratificationpediatric patientsprecision medicinepredictive markerpredictive modelingprognostic modelrisk stratificationtooltreatment planningtumor heterogeneityuser-friendlywhole slide imaging
项目摘要
Project Summary
Rhabdomyosarcoma (RMS), the most common soft tissue tumor in childhood, occurs in 350 children annually in
the United States. Correctly classifying the RMS subtypes and having an outlook for patient prognosis is crucial for
determining treatment options. The objective of this proposal is to design and develop informatics tools to provide RMS
subtype classification and patient prognosis prediction from whole slide images (WSIs). The rationale underlying this
proposal is that the development of the deep learning tools will provide objective measurements and judgements of the
disease and make pathologists and physicians better informed to make precise diagnosis and treatment suggestions. The
goal will be realized by pursuing two specific aims: (1) Develop informatics tools to analyze whole slide imaging data for
pediatric RMS. (2) Develop and validate pathology image-based RMS outcome prediction models. The proposed research
is significant as the completion of it will provide viable tools to aid pathologists and physicians to improve RMS diagnosis
and treatments, and it could be extendable to other malignant diseases. In summary, we have assembled a multi-
disciplinary research team with complementary research expertise. We will fully leverage the development from the
parent NCI ITCR U01 grant 1U01CA249245, “Informatics Tools To Analyze And Model Whole Slide Image Data At The Single
Cell Level” (Funding Period: 09/01/2021 – 08/31/2024). We will also fully utilize our accumulated data and extensive
experience to solve the challenge of developing computational algorithms for pathology imaging analysis and outcome
prediction for pediatric RMS. This will greatly facilitate treatment planning for individual RMS patients and will have an
important impact on clinical care.
项目概要
横纹肌肉瘤 (RMS) 是儿童期最常见的软组织肿瘤,每年有 350 名儿童发病
正确分类 RMS 亚型并展望患者预后对于美国来说至关重要。
该提案的目标是设计和开发信息学工具以提供 RMS。
从整个幻灯片图像 (WSI) 进行亚型分类和患者预后预测。
建议深度学习工具的开发将提供客观的测量和判断
疾病并使病理学家和医生更好地了解情况,从而做出精确的诊断和治疗建议。
该目标将通过追求两个具体目标来实现:(1)开发信息学工具来分析整个幻灯片成像数据
(2) 开发并验证基于病理图像的 RMS 结果预测模型。
意义重大,因为它的完成将为帮助病理学家和医生改善 RMS 诊断提供可行的工具
和治疗方法,并且可以扩展到其他恶性疾病。总之,我们已经组装了多种方法。
我们将充分利用具有互补研究专长的学科研究团队。
母公司 NCI ITCR U01 授予 1U01CA249245,“用于分析和建模整个幻灯片图像数据的信息学工具
Cell Level”(资助期限:09/01/2021 – 08/31/2024)我们也将充分利用我们积累的数据和广泛的经验。
解决开发用于病理成像分析和结果的计算算法的挑战的经验
儿科 RMS 的预测将极大地促进个体 RMS 患者的治疗计划,并将有一个
对临床护理产生重要影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guanghua Xiao其他文献
Guanghua Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guanghua Xiao', 18)}}的其他基金
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10457848 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10625500 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10681472 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10097119 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10552537 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10304819 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10681472 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing computational algorithms for histopathological image analysis
开发组织病理学图像分析的计算算法
- 批准号:
10314050 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Informatics Tools To Analyze And Model Whole Slide Image Data At The Single Cell Level
在单细胞水平上分析和建模整个幻灯片图像数据的信息学工具
- 批准号:
10677280 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
相似国自然基金
基于“糖原合成-UDPG/P2Y14/STAT1-肺泡巨噬细胞M1型极化”途径探讨热炎宁合剂治疗急性肺损伤的作用机制
- 批准号:82374418
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
清热化痰理气方通过调控中性粒细胞导致肺泡-毛细血管单元损伤干预肺气肿形成的机制研究
- 批准号:82374361
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
去甲肾上腺素调控肺泡上皮细胞焦亡在ARDS中的作用及机制研究
- 批准号:82301442
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MUC1与BMP4相互作用影响肺泡再生和肺气肿发生发展的机制研究
- 批准号:82330002
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
Birc6泛素化调控Beclin-1在肺纤维化肺泡上皮细胞衰老中的功能及机制研究
- 批准号:82300093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Novel Ultrasonic Methods for the Assessment of Pulmonary Edema
评估肺水肿的超声新方法
- 批准号:
10246307 - 财政年份:2020
- 资助金额:
$ 24.6万 - 项目类别:
NON-INVASIVE HIGH-RESOLUTION DIAGNOSIS OF PERIODONTAL ATTACHMENT LEVELS USING REA
使用 REA 对牙周附着水平进行非侵入性高分辨率诊断
- 批准号:
7738066 - 财政年份:2009
- 资助金额:
$ 24.6万 - 项目类别: