Data-driven models of hematological cell fate decision and differentiation
血液细胞命运决定和分化的数据驱动模型
基本信息
- 批准号:9247481
- 负责人:
- 金额:$ 34.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:Biological ProcessBloodCell Differentiation processCell LineageCellsCoculture TechniquesComplexDataData SetDevelopmentDifferentiation AntigensDiseaseFlow CytometryGene ExpressionHematologyHuman DevelopmentImmunologyIn VitroLigandsMathematicsMemoryMethodologyModelingNonlinear DynamicsNormal CellPathologyPharmaceutical PreparationsPlayPopulationRoleSamplingScienceScientistSignal Transductionbiological systemscancer cellcell typeinsightleukemiamathematical modelreceptorresearch studystem cell biologytranscription factortranscriptome sequencing
项目摘要
This project is a collaborative effort between scientists with complementary expertise in mathematics and biomedical sciences. The project has three aims: (i) Develop a mathematical signaling model able to reproduce blood lineage differentiation, using associative memories to represent single cell states. The model will be able to make predictions on the effect on differentiation of specific combinations of receptor ligands and drugs. (ii) Develop a mathematical model for an ensemble of different hematological cells, under co-culture conditions. The model will describe the dynamics of cells as interacting attractors. (iii) Verify the predictions of the mathematical modeling using in vitro experiments to detect markers of differentiation, to assess cellular differentiation by flow cytometry, and by performing RNA-seq on pools of cells and on single cells. Cells will be studied as pure populations and in co-culture conditions. The rapidly increasing availability of gene expression data of different types of cells has created new opportunities for integrating these datasets into mathematical models to make experimentally verifiable predictions. The proposed model will capture the multistable nonlinear dynamics in complex cell signaling networks regulating cell differentiation. This will be realized by using RNA-seq data on pooled cell samples and single cells. The model will make predictions on combinations of transcription factors or receptor ligands that could induce a specific cell lineage. By comparison with our planned experiments, the model will clarify the role of specific receptor ligands in cell fate decision of single cells or a population of cells. The proposed methodology will enhance our general understanding of biological processes and diseases where cell differentiation plays a key role. In particular, this project could provide new biomedical insight in stem cell biology, immunology, hematology, and human development.
该项目是具有数学和生物医学科学互补专业知识的科学家之间的合作努力。该项目具有三个目的:(i)开发一种数学信号传导模型,能够使用缔合记忆来代表单细胞状态,以重现血统的分化。该模型将能够预测受体配体和药物特定组合的影响的影响。 (ii)在共培养条件下,开发了不同血液学细胞集合的数学模型。该模型将将细胞的动力学描述为相互作用的吸引子。 (iii)使用体外实验来验证数学建模的预测,以检测分化标记,通过流式细胞仪评估细胞分化,并通过对细胞池和单个细胞进行RNA-seq进行。细胞将作为纯种群和共培养条件研究。不同类型细胞的基因表达数据的迅速增加,已经为将这些数据集集成到数学模型中,以进行实验可验证的预测创造了新的机会。所提出的模型将捕获调节细胞分化的复杂细胞信号网络中的多稳态非线性动力学。这将通过使用汇总细胞样品和单个细胞上的RNA-seq数据来实现。该模型将对可能诱导特定细胞谱系的转录因子或受体配体组合进行预测。通过与我们计划的实验进行比较,该模型将阐明特定受体配体在单细胞或细胞群的细胞命运决策中的作用。提出的方法将增强我们对细胞分化起关键作用的生物过程和疾病的一般理解。特别是,该项目可以为干细胞生物学,免疫学,血液学和人类发展提供新的生物医学见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo Piermarocchi其他文献
Carlo Piermarocchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo Piermarocchi', 18)}}的其他基金
Network models of differentiation landscapes for angiogenesis and hematopoiesis
血管生成和造血分化景观的网络模型
- 批准号:
10622797 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Data-driven models of hematological cell fate decision and differentiation
血液细胞命运决定和分化的数据驱动模型
- 批准号:
9923020 - 财政年份:2016
- 资助金额:
$ 34.13万 - 项目类别:
相似国自然基金
HNF4α调控ABCG2转录解析西红花去柱头花部抗高尿酸血症的作用机制
- 批准号:82304802
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
隐性血桃候选基因rbl调控花青苷积累的分子机制
- 批准号:32302497
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于GSTO1介导ASC去谷胱甘肽化修饰研究四妙丸对高尿酸血症血管内皮功能障碍的作用机制
- 批准号:82305034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“脾统血濡脉”探讨健脾益气法调控LOX-1/SPP1/EGF通路驱动mtROS 预防AS分子机制研究
- 批准号:82305061
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
发酵乳杆菌B44胞外多糖通过调控儿童高血铅肠道MUC2分泌抑制重金属铅吸收的机制研究
- 批准号:82300626
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
REGULATION OF BONE MARROW MESENCHYMAL STEM CELLS BY VCAM1
VCAM1 对骨髓间充质干细胞的调节
- 批准号:
10537391 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Strategies to predict and overcome resistance to cancer immunotherapy
预测和克服癌症免疫治疗耐药性的策略
- 批准号:
10638167 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Targeting epigenetic machinery to overcome myeloid cell-mediated resistance to anti-PD-1 therapy in GBM
靶向表观遗传机制克服 GBM 中骨髓细胞介导的抗 PD-1 治疗耐药性
- 批准号:
10634277 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别: