Effects of brain stimulation on neuronal dynamics and behavior
脑刺激对神经元动力学和行为的影响
基本信息
- 批准号:9102628
- 负责人:
- 金额:$ 24.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-15 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnteriorAreaAttention deficit hyperactivity disorderAuditoryAutistic DisorderBehaviorBehavioralBrainBrain regionCell membraneCell physiologyCellsCognitionCognitiveCognitive deficitsDataDetectionDiseaseElectric StimulationElectrodesElectroencephalographyElectrophysiology (science)EventFocused UltrasoundFrequenciesFutureGoalsHippocampus (Brain)ImplantInterventionLeadLinkMacacaManualsMeasurementMeasuresMethodsModalityModelingMonkeysMotorNeocortexNeuronsPathway AnalysisPatternPerceptionPerformancePhasePhysiologicalPhysiological ProcessesPhysiologyPopulationPositioning AttributeProcessPropertyRoleSamplingSchizophreniaSensorySensory ProcessSiteSleepSourceSpeechStreamSynapsesTestingTreatment ProtocolsVariantauditory discriminationawakebehavior measurementcognitive abilitycognitive functiondensityelectric fieldfollow-uphigh riskimprovedindexinginstrumentmulti-electrode arraysneocorticalneuropsychiatric disordernoveloperationpublic health relevancerelating to nervous systemresearch studyresponsesensory discriminationsensory stimulussuccesstool
项目摘要
DESCRIPTION (provided by applicant): Neuroelectric oscillations reflect synchronous excitability fluctuations in ensembles of neurons, ubiquitous in the waking (and sleeping) brain, and are believed to be fundamental instruments in adaptive brain function. Despite recent progress in understanding the physiological underpinnings and functional significance of neuronal oscillations, the cellular physiology of the reset and entrainment processes, that allow the brain to harness oscillations as building blocks of perception and cognition, are unclear. Recent findings suggest that it is possible to manipulate neuronal oscillations using weak transcranial electrical stimulation (TES) both with direct and alternating currents (tDCS and tACS respectively). This raises possibilities for causal manipulations that can help to confirm the
role of specific oscillatory dynamics in specific aspects of perception and behavior, as well as the possibility of treating neuropsychiatric disorders in which disruptions of brain dynamics underlie cognitive deficits. We propose to examine effects of tDCS and tACS with a combination of electric field measurements and modelling, electrophysiological and behavioral measurements in awake-behaving macaque monkeys. Our Specific Aims are: 1) Optimize models to target specific brain regions with tDCS and tACS. Widespread. "macro-scale" intracranial recordings with chronically-implanted, 48 channel stereotactic EEG (s-EEG) arrays will determine how intracranial electric fields are affected by stimulation parameters, e.g., intensity, frequency (tACS) and variations in stimulating electrode nu
mber (up to 8) and positions. 2) Define physiological and behavioral effects of tDCS and tACS in active sensory processing. We will use a limited (24 channel) version of the macro-scale network analysis (AIM 1), along with micro-scale measures in monkeys performing auditory discriminations and making manual responses to targets. Micro-scale measures include laminar field potential (FP), current source density (CSD) and multiunit activity (MUA) profiles sampled with multielectrode arrays across the layers of selected neocortical areas. CSD and MUA analyses are used to define the profiles of synaptic activity (indexed by current sinks and sources) and envelope of concomitant neuronal firing across the cortical layers, thus linking stimulation effects to specific cell populations, circuits and physiological processes engaged in oscillatory dynamics. Measuring network and cell-circuit activity patterns during sensory processing, target detection and motor responding will provide robust and sensitive means to gauge electrical stimulation effects on brain dynamics underlying these key processes. Success will support and inform a broader effort to develop a more detailed concrete picture of the properties of neuronal ensembles that create brain rhythms and organize them to perform fundamental cognitive operations. Improved mechanistic understanding of brain stimulation effects may lead to improved brain stimulation protocols, treatments disorders such as schizophrenia, autism and ADHD, in which sensory entrainment at both low and high frequencies is demonstrably or putatively impaired.
描述(由申请人提供):神经电振荡反映了神经元群的同步兴奋性波动,在清醒(和睡眠)大脑中普遍存在,并且被认为是适应性大脑功能的基本工具,尽管最近在理解生理基础和功能方面取得了进展。神经振荡的重要性,即重置和夹带过程的细胞生理学,使大脑能够利用振荡作为感知和认知的构建模块,最近的研究结果表明,可以使用直流电和交流电(分别为 tDCS 和 tACS)的弱经颅电刺激(TES)来操纵神经元振荡,这提高了因果操作的可能性,有助于确认。
特定振荡动力学在感知和行为特定方面的作用,以及治疗神经精神疾病的可能性,其中大脑动力学破坏导致认知缺陷,我们建议结合电场测量和建模来检查 tDCS 和 tACS 的影响。 ,对清醒行为的猕猴进行电生理学和行为测量。我们的具体目标是:1)优化模型以使用 tDCS 和 tACS 来定位特定的大脑区域。使用长期植入的 48 通道立体定向脑电图 (s-EEG) 阵列进行“宏观尺度”颅内记录将确定刺激参数(例如强度、频率 (tACS) 和刺激电极 nu 的变化)如何影响颅内电场
琥珀色(最多 8 个)和位置 2) 定义 tDCS 和 tACS 在主动感觉处理中的生理和行为效应 我们将使用宏观网络分析 (AIM 1) 的有限(24 通道)版本以及微观网络分析。 - 猴子进行听觉辨别并对目标做出手动反应的尺度测量 微观尺度测量包括用多电极采样的层流场电位 (FP)、电流源密度 (CSD) 和多单元活动 (MUA) 剖面。跨选定新皮质区域层的阵列用于定义突触活动的概况(由电流汇和源索引)和跨皮质层的伴随神经放电的包络,从而将刺激效果与特定细胞群联系起来,在感觉处理、目标检测和运动响应过程中测量参与振荡动力学的网络和细胞电路活动模式将提供强大而灵敏的方法来测量电刺激对这些关键过程的大脑动力学的影响。成功将支持和指导更广泛的努力,以开发更详细的神经整体属性的具体图片,这些神经整体创造大脑节律并组织它们执行基本的认知操作。改善对大脑刺激效果的机械理解可能会导致改善大脑刺激方案和治疗。精神分裂症、自闭症和多动症等疾病,其中低频和高频的感觉夹带明显或推定受损。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES E SCHROEDER其他文献
CHARLES E SCHROEDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES E SCHROEDER', 18)}}的其他基金
Multiscale physiology and causal mechanisms of slow network fluctuations
慢网络波动的多尺度生理学和因果机制
- 批准号:
10639546 - 财政年份:2017
- 资助金额:
$ 24.26万 - 项目类别:
Dynamic Neural Mechanisms of Audiovisual Speech Perception
视听言语感知的动态神经机制
- 批准号:
9356348 - 财政年份:2016
- 资助金额:
$ 24.26万 - 项目类别:
Effects of brain stimulation on neuronal dynamics and behavior
脑刺激对神经元动力学和行为的影响
- 批准号:
9262276 - 财政年份:2016
- 资助金额:
$ 24.26万 - 项目类别:
2014 Neurobiology of Cognition Gordon Research Conference & Gordon Research Semin
2014年认知神经生物学戈登研究会议
- 批准号:
8780089 - 财政年份:2014
- 资助金额:
$ 24.26万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Neural and affective mechanisms underlying prospective self-control costs
潜在自我控制成本的神经和情感机制
- 批准号:
10660515 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别:
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别:
Catheter-injectable system for local drug delivery after myocardial infarct
用于心肌梗死后局部给药的导管注射系统
- 批准号:
10722614 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别:
Anterior Insula Projections for Alcohol Drinking/Anxiety Interactions in Female and Male Rats
雌性和雄性大鼠饮酒/焦虑相互作用的前岛叶预测
- 批准号:
10608759 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别: