Unified Joint Statistical Reconstruction of PET & MR

PET统一联合统计重建

基本信息

  • 批准号:
    10263164
  • 负责人:
  • 金额:
    $ 24.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-30 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Simultaneous PET/MR can be considered as an integrated imaging modality only if the information of both modalities is integrated together. In current routine PET/MR applications, the PET and MR scans are performed separately, and the images are reconstructed separately as well. The information is integrated only at the application level. Here we propose unified methodologies of joint PET/MR image reconstruction, a paradigm shifting new way to integrate information of PET and MR to significantly maximize the outcome of PET/MR. The PET and MR scanners indeed measure different physical or physiological signals, but there are still redundant information (e.g. tumor boundary and mutual information) between the images obtained with the two modalities that can be utilized to build connection between PET and MR images in a potential joint reconstruction. In addition, if the compartmental model is taken into account, the physiological parameters estimated from PET and MR can have overlaps, and therefore the parametric image (voxel-wise kinetic parameters) estimated from one modality could be directly used to help the estimation of the parametric image of the other modality. Therefore, there are inter- connections between these two modalities that we can use to develop elegant methods of joint reconstruction. We will first take advantage of the simultaneous acquisition of PET/MR to develop a static image reconstruction with anatomic prior derived from MR images, and to develop methods to jointly reconstruct gated PET images using a motion field computed from MR images. We believe in both cases, the quality of PET images will be significantly improved compared to traditional approaches. For PET/MR, there are many novel ways to jointly model the dynamic PET and MR images. We will thus develop an alternating direction method of multipliers (ADMM) to directly estimate the voxel-wise kinetic parameters of dynamic PET and dynamic MR together from raw data. This will achieve the maximum signal noise ratio of parametric images for both dynamic PET and MR. We will also investigate novel approaches to parametric imaging of non-stationary kinetic modeling in which not only the images are estimated but also the uncertainty on those estimates of the parametric images. The knowledge of uncertainty is important when making decisions about progression/regression of the disease, signal detection, etc. We will use a method developed in our laboratory in which the noise in raw PET data will be "transferred" to parameter images using origin ensemble algorithm.
抽象的 仅当同时 PET/MR 的信息都包含在内时,才可以将同步 PET/MR 视为一种集成成像方式。 方式被整合在一起。在当前的常规 PET/MR 应用中,执行 PET 和 MR 扫描 单独地,并且图像也单独地重建。该信息仅在 应用级别。在这里,我们提出了联合 PET/MR 图像重建的统一方法,这是一个范例 转变整合 PET 和 MR 信息的新方式,以显着最大化 PET/MR 的结果。这 PET和MR扫描仪确实测量不同的物理或生理信号,但仍然存在冗余 通过两种方式获得的图像之间的信息(例如肿瘤边界和相互信息) 可用于在潜在的联合重建中建立 PET 和 MR 图像之间的连接。此外,如果 考虑到房室模型,从 PET 和 MR 估计的生理参数可以有 重叠,因此从一种模态估计的参数图像(体素动力学参数)可以是 直接用于帮助估计其他模态的参数图像。因此,有间 这两种模式之间的联系我们可以用来开发优雅的联合重建方法。 我们将首先利用 PET/MR 的同步采集来开发静态图像重建 从 MR 图像导出解剖先验,并开发使用联合重建门控 PET 图像的方法 根据 MR 图像计算的运动场。我们相信在这两种情况下,PET 图像的质量都会显着提高 与传统方法相比有所改进。对于 PET/MR,有许多新颖的方法来联合建模动态 PET 和 MR 图像。因此,我们将开发一种交替方向乘数法(ADMM)来直接估计 来自原始数据的动态 PET 和动态 MR 的体素动力学参数。这将实现 动态 PET 和 MR 参数图像的最大信噪比。我们也会调查小说 非平稳动力学建模的参数成像方法,其中不仅估计图像,而且 还有参数图像估计的不确定性。当以下情况时,对不确定性的了解很重要: 做出有关疾病进展/消退、信号检测等的决定。我们将使用一种方法 我们实验室开发的,其中原始 PET 数据中的噪声将使用“转移”到参数图像 原始集成算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanzheng Li其他文献

Quanzheng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanzheng Li', 18)}}的其他基金

Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
  • 批准号:
    10592341
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
  • 批准号:
    10444412
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
  • 批准号:
    10651773
  • 财政年份:
    2017
  • 资助金额:
    $ 24.82万
  • 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
  • 批准号:
    8702789
  • 财政年份:
    2014
  • 资助金额:
    $ 24.82万
  • 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
  • 批准号:
    8814222
  • 财政年份:
    2014
  • 资助金额:
    $ 24.82万
  • 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
  • 批准号:
    8237421
  • 财政年份:
    2011
  • 资助金额:
    $ 24.82万
  • 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
  • 批准号:
    8399088
  • 财政年份:
    2011
  • 资助金额:
    $ 24.82万
  • 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
  • 批准号:
    8588924
  • 财政年份:
    2011
  • 资助金额:
    $ 24.82万
  • 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
  • 批准号:
    7877521
  • 财政年份:
    2010
  • 资助金额:
    $ 24.82万
  • 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
  • 批准号:
    8421579
  • 财政年份:
    2010
  • 资助金额:
    $ 24.82万
  • 项目类别:

相似国自然基金

能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
  • 批准号:
    22373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
  • 批准号:
    52335001
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
面向量子模拟算法的量子软件优化技术研究
  • 批准号:
    62302395
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
  • 批准号:
    62301029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针对单序列/多域蛋白质的蛋白质结构从头预测算法研究与软件研制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
  • 批准号:
    10784983
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
  • 批准号:
    10585452
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
  • 批准号:
    10643313
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
  • 批准号:
    10900991
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了