Identifying novel networks of candidate Atrial Fibrillation genes in the Drosophila cardiac aging model
识别果蝇心脏衰老模型中候选心房颤动基因的新网络
基本信息
- 批准号:10576323
- 负责人:
- 金额:$ 7.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAction PotentialsAddressAffectAgeAgingArrhythmiaAtrial FibrillationBiological ModelsCRISPR/Cas technologyCalciumCalcium SignalingCandidate Disease GeneCardiacCardiac MyocytesComplexDataDietDiseaseDrosophila genusDrug TargetingEctopic ExpressionEducational process of instructingEnvironmentEnvironmental Risk FactorEnzymesEpidemicEquipmentEtiologyExhibitsFatty acid glycerol estersFibrosisGeneral PopulationGenerationsGenesGeneticGenetic Predisposition to DiseaseHeartHeart AtriumHeart DiseasesHeart failureHigh Fat DietHomeostasisHumanIncidenceIndividualLaboratoriesLinkLipidsLong QT SyndromeLongevityMeasuresMediatingMetabolicModelingMolecularMyocardial dysfunctionObesityOrganPathogenesisPathway interactionsPersonsPhenotypePhospholipidsPopulationPositioning AttributePostdoctoral FellowPotassium ChannelPredispositionProductionPumpQuality of lifeResearchResearch PersonnelResearch TrainingResource SharingRisk FactorsRoleScientistSmall Interfering RNAStearoyl-CoA DesaturaseStressStrokeSystemTalentsTechnical ExpertiseTestingTherapeuticTissuesTrainingUniversitiesUnsaturated FatsValidationage relatedaging populationbioinformatics pipelinecardioprotectioncareercombinatorialdietaryendoplasmic reticulum stressfatty acid metabolismflygene interactiongene networkgene regulatory networkgenetic manipulationgenetic variantgenome wide association studyheart functionheart rhythmhigh throughput screeninghuman old age (65+)improvedin vivoinduced pluripotent stem cellinherited cardiomyopathyinterdisciplinary approachknock-downnovelnovel therapeutic interventionnovel therapeuticsphospholambansarcoplasmic reticulum calcium ATPaseselective expressionsynergism
项目摘要
Project Summary/Abstract
Atrial fibrillation (AF), the most common heart rhythm disorder, is reaching epidemic proportions in the aging
population, affecting nearly 33 million people worldwide. The incidence of AF increases with age, with individuals
over the age of 65 having a 9% chance of developing this arrhythmia. AF is the leading cause of heart failure
and stroke in human populations, and as the average lifespan continues to increase, so will the rates of these
disorders. However, the molecular etiology of AF is not well defined and treatment options are limited.
Additionally, there is evidence that common substrates link AF with other arrhythmia types and heart disease
(e.g. long QT syndrome). Recent research has identified both common genetic variants that increase AF
susceptibility in the general population and rare genetic variants linked to AF, suggesting that AF is likely a
multifactorial disease whose etiology involves network(s) of interacting genetic variants. Resolving these
complex interactions modulating cardiac function in AF is impractical in mammalian systems, but approachable
using Drosophila genetics. Drosophila provide an advantage in unraveling the largely unknown genetic regulators of
heart dysfunction due to the reduced genetic redundancy and high degree of conservation in the underlying pathways
and cellular mechanisms. A subset of AF-associated candidate genes likely interact in a combinatorial manner with
age and diet to cause cardiac arrhythmicity. Preliminary screens of candidate AF-related genes in both the fly
heart and in human induced pluripotent stem cell atrial-like cardiomyocytes (hiPSC-ACMs) have identified a
network of genes that suggests interactions between stearoyl-CoA desaturase (SCD) and two AF-associated
genes, KCNA5 and phospholamban (PLN). SCD, a key lipid metabolic enzyme, is known to disrupt sarcoplasmic
reticulum calcium ATPase pump (SERCA) activity, however, a KCNA5-SCD-SERCA-PLN network has not been
well demonstrated in cardiac tissue. Cardiac phenotyping of interactions found in AF networks in both model
systems will identify novel and likely conserved genetic pathways, providing novel therapeutic strategies. Sanford
Burnham Prebys (SBP) is an environment that is highly supportive of research and collaborative interdisciplinary
approaches, with extensive shared resources providing investigators with both cutting-edge equipment and
technical expertise. Dr. Kezos has already mastered a number of complementary scientific concepts and
approaches that he is using to address his research questions. Additionally, the Ocorr Laboratory is staffed with
talented postdoctoral fellows and staff scientists who will be of assistance to Dr. Kezos during the research
training. With the proposed training in the hiPSC model system, bioinformatics pipelines and CRISPR-Cas9
gene editing, Dr. Kezos will be well equipped to launch an impactful and independent research career to
investigate the genetics of cardiomyopathies. The proposed research strategy and training plan will accelerate
Dr. Kezos towards becoming an independent investigator with a research/teaching track position at a university.
项目概要/摘要
心房颤动(AF)是最常见的心律失常,在老龄化中已达到流行病的程度
影响全球近 3300 万人。房颤的发病率随着年龄的增长而增加,
65岁以上的人有9%的机会出现这种心律失常。 AF 是心力衰竭的主要原因
人口中的中风和中风,随着平均寿命的不断延长,这些疾病的发生率也会增加
失调。然而,房颤的分子病因学尚未明确,治疗选择也有限。
此外,有证据表明常见底物将 AF 与其他心律失常类型和心脏病联系起来
(例如长 QT 综合征)。最近的研究发现了两种常见的增加房颤的基因变异
一般人群的易感性以及与 AF 相关的罕见遗传变异,表明 AF 可能是一种
其病因涉及相互作用的遗传变异网络的多因素疾病。解决这些
调节 AF 心脏功能的复杂相互作用在哺乳动物系统中不切实际,但可行
使用果蝇遗传学。果蝇在解开很大程度上未知的遗传调节因子方面提供了优势
由于遗传冗余减少和潜在途径的高度保守而导致心脏功能障碍
和细胞机制。 AF 相关候选基因的一个子集可能以组合方式与
年龄和饮食引起心律失常。两种果蝇中候选 AF 相关基因的初步筛选
心脏和人诱导多能干细胞心房样心肌细胞 (hiPSC-ACM) 已鉴定出
基因网络表明硬脂酰辅酶 A 去饱和酶 (SCD) 和两种 AF 相关酶之间存在相互作用
基因、KCNA5 和受磷蛋白 (PLN)。 SCD 是一种关键的脂质代谢酶,已知会破坏肌浆
网状钙 ATP 酶泵 (SERCA) 活性,然而,KCNA5-SCD-SERCA-PLN 网络尚未被研究
在心脏组织中得到了很好的证明。两种模型中 AF 网络中发现的相互作用的心脏表型
系统将识别新颖且可能保守的遗传途径,提供新颖的治疗策略。桑福德
Burnham Prebys (SBP) 是一个高度支持研究和跨学科协作的环境
方法,拥有广泛的共享资源,为研究人员提供尖端设备和
技术专长。 Kezos 博士已经掌握了许多互补的科学概念,并且
他用来解决他的研究问题的方法。此外,Ocorr 实验室还配备了
才华横溢的博士后研究员和工作人员科学家将在研究期间为 Kezos 博士提供帮助
训练。通过 hiPSC 模型系统、生物信息学管道和 CRISPR-Cas9 的拟议培训
基因编辑,Kezos 博士将有能力开展有影响力的独立研究生涯
研究心肌病的遗传学。拟议的研究战略和培训计划将加速
Kezos 博士致力于成为一名独立调查员,并在大学担任研究/教学职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kezos其他文献
James Kezos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kezos', 18)}}的其他基金
Identifying novel networks of candidate Atrial Fibrillation genes in the Drosophila cardiac aging model
识别果蝇心脏衰老模型中候选心房颤动基因的新网络
- 批准号:
10400009 - 财政年份:2021
- 资助金额:
$ 7.61万 - 项目类别:
Identifying novel networks of candidate Atrial Fibrillation genes in the Drosophila cardiac aging model
识别果蝇心脏衰老模型中候选心房颤动基因的新网络
- 批准号:
10155141 - 财政年份:2021
- 资助金额:
$ 7.61万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
ENABLING SUBMILLISECOND-TIMESCALE TWO-PHOTON RECORDING OF VOLTAGE DYNAMICS IN THREE DIMENSIONS IN VIVO
实现体内三维电压动态的亚毫秒级双光子记录
- 批准号:
10739579 - 财政年份:2023
- 资助金额:
$ 7.61万 - 项目类别:
A new approach to understanding cognitive disabilities in Down syndrome
理解唐氏综合症认知障碍的新方法
- 批准号:
10725562 - 财政年份:2023
- 资助金额:
$ 7.61万 - 项目类别:
Accelerating remyelination using lanthionine ketimine derivatives
使用羊毛硫氨酸酮亚胺衍生物加速髓鞘再生
- 批准号:
10708047 - 财政年份:2022
- 资助金额:
$ 7.61万 - 项目类别:
Elucidating mechanisms of active dendritic integration in vivo
阐明体内主动树突整合的机制
- 批准号:
10621807 - 财政年份:2022
- 资助金额:
$ 7.61万 - 项目类别: