Multifactorial contribution of bone nanoscale composition to tissue quality in osteoporosis
骨纳米级成分对骨质疏松症组织质量的多因素贡献
基本信息
- 批准号:10575979
- 负责人:
- 金额:$ 20.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeBiopsyBone DensityBone TissueClinicalClinical ManagementClinical ResearchClinical assessmentsCollagenCollagen FibrilComplexDataData SetDiagnosisDiseaseElementsEvaluationFractureFutureGoalsHeterogeneityHistologicImageImpairmentIncidenceIndividualKnowledgeLeast-Squares AnalysisMachine LearningMineralsModelingMorphologyNatureOpticsOsteonOsteoporosisOutcomeOutcomes ResearchPathogenesisPerformancePersonsPharmacotherapyPlayPolishesPolymethyl MethacrylatePropertyPublic HealthResearchResolutionRoleSamplingScanning Electron MicroscopySpecificitySpectroscopy, Fourier Transform InfraredStandard PreparationsStructureTechniquesTissuesValidationX ray spectroscopyaging populationartificial neural networkbonebone fragilitybone healthbone qualitybone strengthcrystallinitydeep learningfracture riskimaging systemimprovedinfrared spectroscopyinnovationinsightlearning strategymachine learning methodmarkov modelmetermicroCTmineralizationmorphometrynanoscalenovel therapeuticsosteoporotic bonerecurrent neural networkresearch studyskeletal disorderstoichiometrysubmicron
项目摘要
SUMMARY
There is a long-standing quest to better understand what causes our bones to break, especially as a devastating
and widespread consequence of osteoporosis. Beyond assessment of bone quantity (e.g., bone mineral density),
it is well-know that tissue-level quality plays a key role in determining bone strength and fragility. We and others
have shown that microscale tissue composition is intrinsically related to skeletal diseases; however, a limitation
of this approach is that it cannot capture features of the nanoscale building blocks of bone quality and integrity
(mineralized collagen fibrils and bundles on the order of 500 nm). Thus, analysis of bone composition at high
spatial resolution is needed to elucidate the nanoscale origins of impaired bone health. Additionally, there is a
paucity of research into the combined role of compositional properties in bone tissue quality, which is essential
to reveal the multifactorial nature underlying poor bone features in osteoporosis. To address these critical gaps
in knowledge, we aim to apply innovative approaches to enlighten the multifactorial relationship between
bone nanoscale composition and reduced bone tissue quality in osteoporosis. We hypothesize that
nanoscale compositional properties of bone are significant correlates to predict histological diagnosis and bone
morphologic features associated with osteoporosis. In Aim 1, we propose to determine and quantify nanoscale
compositional properties of healthy and osteoporotic bones. Readily available clinical bone biopsies will first be
evaluated for standard histopathological diagnosis, as well as by micro-computed tomography (microCT) of bone
morphometry. The samples will then be assessed by state-of-the-art optical photothermal infrared (O-PTIR)
spectroscopy and imaging, which allows breakthrough analysis of intact tissue composition at 500 nm spatial
resolution. Our supportive preliminary data show the acquisition and quantification of diverse bone nanoscale
compositional properties of mineral and collagen within individual osteon and trabeculae. Additionally, mineral
stoichiometry will be determined by scanning electron microscopy with energy dispersive X-ray spectroscopy
(SEM-EDX). With this rich dataset, we will perform a comprehensive analysis of comparisons and correlations
among bone features in healthy and osteoporotic bones to identify relevant nanoscale compositional properties
associated with typical osteoporotic bone quality. In Aim 2, we propose to apply machine learning methods to
elucidate the multifactorial relationship between bone nanoscale composition and osteoporosis. The goal will be
to predict histopathological diagnosis and morphometric features of normal and osteoporotic bones based on
input of combined nanoscale compositional properties. We will initially apply multivariable partial least square
(PLS) cross-validation, then focus on cutting-edge deep learning methods. This innovative approach will break
new ground towards elucidating which bone nanoscale compositional properties underlie poor bone quality in
osteoporosis and will inform future clinical studies into new therapeutic tissue targets to improve bone health.
概括
长期以来,人们一直在寻求更好地了解导致我们骨折的原因,尤其是作为一种毁灭性的骨折。
以及骨质疏松症的广泛后果。除了评估骨量(例如骨矿物质密度)之外,
众所周知,组织质量在决定骨骼强度和脆性方面起着关键作用。我们和其他人
已表明微观组织成分与骨骼疾病有着内在的相关性;然而,有一个限制
这种方法的缺点是它无法捕获骨质量和完整性的纳米级构建块的特征
(矿化胶原原纤维和束约为 500 nm)。因此,高骨成分分析
需要空间分辨率来阐明骨骼健康受损的纳米级起源。此外,还有一个
缺乏对成分特性对骨组织质量的综合作用的研究,而这一点至关重要
揭示骨质疏松症中不良骨骼特征背后的多因素本质。为了解决这些关键差距
在知识方面,我们的目标是应用创新的方法来启发知识之间的多因素关系
骨质疏松症中骨纳米级成分和骨组织质量降低。我们假设
骨的纳米级成分特性与预测组织学诊断和骨具有重要相关性
与骨质疏松症相关的形态学特征。在目标 1 中,我们建议确定和量化纳米级
健康骨骼和骨质疏松骨骼的成分特性。首先将进行现成的临床骨活检
通过标准组织病理学诊断以及骨显微计算机断层扫描 (microCT) 进行评估
形态测量。然后,样品将通过最先进的光学光热红外 (O-PTIR) 进行评估
光谱和成像,可在 500 nm 空间对完整组织成分进行突破性分析
解决。我们的支持性初步数据显示了不同骨纳米级的采集和量化
单个骨和小梁内矿物质和胶原蛋白的成分特性。此外,矿物质
化学计量将通过扫描电子显微镜和能量色散 X 射线光谱法确定
(SEM-EDX)。借助这个丰富的数据集,我们将进行比较和相关性的全面分析
分析健康骨骼和骨质疏松骨骼的骨骼特征,以确定相关的纳米级成分特性
与典型的骨质疏松骨质量相关。在目标 2 中,我们建议应用机器学习方法
阐明骨纳米级成分与骨质疏松症之间的多因素关系。目标将是
基于预测正常和骨质疏松骨骼的组织病理学诊断和形态特征
输入组合纳米级成分特性。我们首先将应用多变量偏最小二乘法
(PLS)交叉验证,然后关注前沿的深度学习方法。这种创新方法将打破
阐明哪些骨纳米级成分特性是骨质量差的基础
骨质疏松症,并将为未来的临床研究提供新的治疗组织目标,以改善骨骼健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Querido其他文献
William Querido的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
Console Upgrade for 4.7T PET-MRI Preclinical Scanner
4.7T PET-MRI 临床前扫描仪控制台升级
- 批准号:
10630520 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 20.44万 - 项目类别: