Project 3 - Mapping Long-range Allosteric Pathways in CRISPR-Cas9
项目 3 - 绘制 CRISPR-Cas9 中的长程变构途径
基本信息
- 批准号:10271625
- 负责人:
- 金额:$ 37.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAllosteric RegulationAmino AcidsBindingBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessBiomedical EngineeringBiophysicsCRISPR/Cas technologyCell physiologyCenters of Research ExcellenceChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCommunicationCommunity NetworksComputational BiologyComputer SimulationComputing MethodologiesCouplingCrystallizationDNADNA BindingDataDiseaseEngineeringEnsureEnzymesEquilibriumGene TargetingGenomeGenomicsGuide RNAInvestigationKnowledgeLaboratoriesLengthLinkMapsMethodsModernizationModificationMolecularMolecular BiologyMolecular ConformationMotionMutationNuclear Magnetic ResonanceNucleotidesPathogenicityPathologyPathway AnalysisPathway interactionsPlayProcessProtein BiochemistryProteinsRNA BindingRegulationRegulator GenesRelaxationRoentgen RaysRoleSignal PathwaySignal TransductionSiteSpecificityStructureTertiary Protein StructureTherapeuticWorkbasebiophysical analysiscomputer studiesdesigndrug discoveryds-DNAenzyme mechanismexperimental studyflexibilitygenome editinghuman diseaseimprovedin vivoinsightinterdisciplinary approachmillisecondmolecular dynamicsmutantnovelnovel strategiesnucleaseprecision medicineprotein functionrecruitresponsescaffoldsimulationsmall molecule inhibitorsuccesstheoriestherapeutic enzymetool
项目摘要
Project Summary
Gene regulatory mechanisms are critical for proper cellular and protein function, and modern molecular
biology has linked numerous pathologies to dysregulation of these processes. Although modification of
the genome to correct pathogenic mutations is a promising therapeutic approach, these efforts cannot
be successful without knowledge of the underlying biochemistry of protein machinery such as CRISPR-
Cas9 (Cas9). Cas9 can be a customizable tool to edit and correct disease-linked (genomic) mutations,
however, to fully realize these applications, novel strategies to overcome its off-target effects and poor
temporal control must be investigated. Cas9 utilizes a guide RNA molecule to recruit, stabilize, and
facilitate cleavage of double-stranded DNA after recognition of a well-known protospacer adjacent motif
(PAM) sequence. Prior X-ray crystal structures indicate that conformational changes within the Cas9
nucleases, HNH and RuvC, are required for effective catalytic function. However, these structures offer
little mechanistic information, as the target DNA and catalytic nucleases are never observed in an
activated state. The conformational shift of HNH, in particular, is correlated to motions of neighboring
subdomains, all of which are activated from >20 Å away by the PAM-binding domain, suggesting an
allosteric mechanism. Understanding this allosteric coupling would have exciting potential for precision
medicine by establishing novel paradigms to control and enhance the spatial and temporal function of
Cas9. We recently identified a pathway of millisecond timescale motions spanning the HNH nuclease
and reaching multiple Cas9 domains that computational results suggest is a portion of a larger allosteric
network that controls Cas9 function. To investigate the reach of this allosteric network and the role of
molecular motions in its mechanism, my laboratory will undertake a synergistic solution NMR and
computational study to map the long-range allosteric pathway of Cas9. We will now (1) characterize
allosteric mutants of HNH that are known to alter Cas9 specificty, (2) establish the biophysical roles of
the neighboring REC2 and REC3 domains in propagating allosteric signals to/from HNH, and (3)
characterize the conformational ensemble governing the full-length Cas9 protein. This multidisciplinary
approach of NMR spin relaxation experiments, molecular dynamics simulations, and network theory, will
probe multi-timescale protein motions in Cas9, revealing specific amino acids responsible for transmitting
structural or dynamic information. These studies will use both full-length Cas9 and novel engineered
constructs to interrogate specific domains within the 160 kDa enzyme. The structural and dynamic
findings of this work will be correlated to function with new in vivo assays to provide a detailed
understanding of the Cas9 allosteric mechanism.
项目概要
基因调控机制对于正常的细胞和蛋白质功能至关重要,现代分子
生物学已将许多病理学与这些过程的失调联系起来。
基因组来纠正致病性突变是一种有前途的治疗方法,但这些努力不能
在不了解 CRISPR 等蛋白质机制的基础生物化学知识的情况下也能取得成功-
Cas9 (Cas9) 可以是编辑和纠正疾病相关(基因组)突变的可定制工具,
然而,为了充分实现这些应用,需要克服其脱靶效应和较差的新策略
必须研究 Cas9 利用引导 RNA 分子来招募、稳定和控制时间。
在识别众所周知的原型间隔子相邻基序后促进双链 DNA 的切割
(PAM) 序列表明 Cas9 内的构象发生变化。
核酸酶 HNH 和 RuvC 是有效催化功能所必需的,但是这些结构提供了有效的催化功能。
几乎没有什么机制信息,因为靶 DNA 和催化核酸酶从未在
HNH 的激活状态尤其与邻近的运动相关。
子结构域,所有这些子结构域都被 PAM 结合结构域激活距离大于 20 Å,这表明
了解这种变构耦合对于精确度具有令人兴奋的潜力。
通过建立新的范式来控制和增强医学的空间和时间功能
我们最近发现了一条跨越 HNH 核酸酶的毫秒级运动路径。
并到达多个 Cas9 结构域,计算结果表明这些结构域是更大变构的一部分
控制 Cas9 功能的网络 研究该变构网络的范围及其作用。
分子运动的机制,我的实验室将进行协同解决核磁共振和
我们现在将 (1) 描述 Cas9 长程变构途径的计算研究。
已知会改变 Cas9 特异性的 HNH 变构突变体,(2) 建立
邻近的 REC2 和 REC3 结构域在向/从 HNH 传播变构信号时,以及 (3)
表征控制全长 Cas9 蛋白的构象整体。
核磁共振自旋弛豫实验、分子动力学模拟和网络理论的方法,将
探测 Cas9 中的多时间尺度蛋白质运动,揭示负责传递的特定氨基酸
这些研究将使用全长 Cas9 和新颖的工程信息。
构建以询问 160 kDa 酶内的特定域的结构和动态。
这项工作的结果将与新的体内测定的功能相关联,以提供详细的
了解 Cas9 变构机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE LISI其他文献
GEORGE LISI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE LISI', 18)}}的其他基金
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10521825 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10521825 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Unraveling the Allosteric Mechanism of Macrophage Migration Inhibitory Factor with Molecular Resolution
用分子分辨率揭示巨噬细胞迁移抑制因子的变构机制
- 批准号:
10708796 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Mapping Long‐range Allosteric Pathways in CRISPR‐Cas9
绘制 CRISPR-Cas9 中的长程变构途径
- 批准号:
10350163 - 财政年份:2020
- 资助金额:
$ 37.74万 - 项目类别:
相似国自然基金
基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
- 批准号:22307113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
- 批准号:32371289
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
GABAB受体复合体变构调节的生理和病理研究
- 批准号:32330049
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于CaSR变构调节探讨大米蛋白肽-钙复合物改善肠上皮屏障功能的机制研究
- 批准号:32360576
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
- 批准号:
10545750 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
- 批准号:
10331326 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10021672 - 财政年份:2019
- 资助金额:
$ 37.74万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10216306 - 财政年份:2019
- 资助金额:
$ 37.74万 - 项目类别: