Architecture and Function of Striatal Dopamine Signaling Machinery
纹状体多巴胺信号传导机制的结构和功能
基本信息
- 批准号:10589076
- 负责人:
- 金额:$ 54.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAcetylcholineAction PotentialsAffinityArchitectureAxonBrainBrain DiseasesCellsCellular biologyCholinergic ReceptorsCodeCommunicationCorpus striatum structureDataDefectDiffuseDiffusionDopamineDopamine D1 ReceptorDopamine D2 ReceptorDopamine ReceptorElectrophysiology (science)EndocytosisExocytosisExtracellular SpaceFundingG-Protein-Coupled ReceptorsGlutamatesGoalsImageInterneuronsLaboratoriesLeadMediatingMembraneMidbrain structureModelingMolecularMovementMusNerveNerve DegenerationNeuromodulatorNeuronsParkinson DiseasePathologyPathway interactionsPhasePositioning AttributePropertyProteinsReceptor ActivationRecyclingRegulationRoleSignal TransductionSiteSliceSpeedStructureSynapsesSynaptic CleftSynaptic TransmissionSystemTestingThree-Dimensional ImageVesicleWorkbiomarker identificationcholinergiccholinergic neurondopaminergic neuronexperimental studyfunctional plasticityinsightknockout genemetermillisecondmolecular assembly/self assemblymolecular markernanometernanoscalenervous system disorderneuronal cell bodyneuroregulationneurotransmitter releasepresynapticreceptorsuperresolution microscopytooltraffickingtransmission processultra high resolutionvoltage
项目摘要
Summary
Dopamine is an important neuromodulator and pathologies in dopamine signaling are a hallmark of brain
disease. Despite these roles, the organization and regulation of dopamine signaling are incompletely understood.
The long-term goal of this project is to dissect the cell biology of axonal dopamine transmission.
Spatial and temporal features of dopamine signaling are different from synaptic transmission. At conventional
synapses, nanometer-scale synaptic structure enables robust receptor activation at sub-millisecond speeds and
restricts communication to point-to-point contacts between select neurons. In contrast, dopamine is a volume
transmitter that diffuses through the extracellular space after exocytosis and may influence many cells through
G-protein coupled receptors. These properties suggest that dopamine transmission is slow and diffuse. Recent
data from several laboratories, including some generated during the previous funding cycle, however, have
revealed that dopamine transmission is highly dynamic and, in some cases, remarkably precise. Furthermore,
dopamine release is powerfully and rapidly regulated by local cholinergic interneurons in the striatum. These
findings suggest that the coding of dopamine volume transmission is more precise than previously thought.
A major question that arises is how the architecture for dopamine transmission can support precise
signaling. Our overarching model is that molecular machinery has evolved to support broad dopamine coding
scales. We build on our previous findings that axonal dopamine exocytosis is executed with millisecond precision
by sparse, sophisticated protein machinery typically present at synapses. In aim 1, we zoom in on the powerful
local regulation and ask how cholinergic neurons trigger dopamine release. Based on preliminary data, we
hypothesize that activity in cholinergic interneurons induces ectopic action potential firing in dopamine axons to
trigger dopamine secretion. Our goal is to test this hypothesis and to understand the underlying mechanisms.
Identification of an endogenous mechanism for ectopic axonal action potential initiation away from the dopamine
neuron soma has important implications for dopamine neuron function. In aim 2, we dissect the organization
of dopamine receptors relative to release sites. We build on recent work that identified markers for these
sparse secretory sites. Our preliminary data reveal that dopamine receptors are clustered one to two micrometers
away from release sites and suggest differences in D1 vs. D2 receptor distributions. We will systematically
assess release-receptor organization in super-resolved 3D-images of large striatal volumes and will
mechanistically dissect how it is set up. We propose that the organization is different from nanoscale synaptic
structure and from the diffuse organization often associated with volume transmission, and may be suited to
mediate distinct pathway activation by switches in dopamine neuron firing modes.
Our work will dissect the organization of specialized dopamine signaling architecture and rapid, local
triggering mechanisms of dopamine release in the vertebrate striatum.
概括
多巴胺是一种重要的神经调节剂,多巴胺信号传导的病理学是大脑的标志
疾病。尽管具有这些作用,但多巴胺信号传导的组织和调节尚不完全清楚。
该项目的长期目标是剖析轴突多巴胺传递的细胞生物学。
多巴胺信号传导的空间和时间特征不同于突触传递。在常规
突触,纳米级突触结构能够以亚毫秒的速度实现强大的受体激活,
将通信限制为选定神经元之间的点对点接触。相反,多巴胺是一种体积
胞吐作用后通过细胞外空间扩散的递质,可能通过以下方式影响许多细胞
G蛋白偶联受体。这些特性表明多巴胺的传递是缓慢且分散的。最近的
然而,来自多个实验室的数据,包括上一个资助周期中产生的一些数据,
研究表明,多巴胺的传递是高度动态的,并且在某些情况下非常精确。此外,
多巴胺的释放受到纹状体中局部胆碱能中间神经元的有力而快速的调节。这些
研究结果表明,多巴胺容量传输的编码比之前想象的更精确。
出现的一个主要问题是多巴胺传输的架构如何支持精确的
发信号。我们的总体模型是分子机制已经发展到支持广泛的多巴胺编码
秤。我们基于之前的发现,即轴突多巴胺胞吐作用以毫秒精度执行
由通常存在于突触处的稀疏而复杂的蛋白质机制实现。在目标 1 中,我们聚焦于强大的
局部调节并询问胆碱能神经元如何触发多巴胺释放。根据初步数据,我们
假设胆碱能中间神经元的活动诱导多巴胺轴突异位动作电位放电
触发多巴胺分泌。我们的目标是检验这一假设并了解其潜在机制。
鉴定远离多巴胺的异位轴突动作电位起始的内源机制
神经元胞体对多巴胺神经元功能具有重要意义。在目标 2 中,我们剖析组织
多巴胺受体与释放位点的关系。我们以最近确定这些标记的工作为基础
分泌部位稀疏。我们的初步数据显示多巴胺受体聚集一到两微米
远离释放位点并表明 D1 与 D2 受体分布的差异。我们将系统地
评估大纹状体体积的超分辨率 3D 图像中的释放受体组织,并将
机械地剖析它是如何设置的。我们认为该组织不同于纳米级突触
结构和来自通常与体积传输相关的扩散组织,并且可能适合
通过多巴胺神经元放电模式的切换介导不同的通路激活。
我们的工作将剖析专门的多巴胺信号传导架构的组织和快速、局部的
脊椎动物纹状体中多巴胺释放的触发机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pascal Simon Kaeser其他文献
Pascal Simon Kaeser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pascal Simon Kaeser', 18)}}的其他基金
Mechanisms for somatodendritic dopamine release in the midbrain
中脑体细胞树突多巴胺释放机制
- 批准号:
10604832 - 财政年份:2023
- 资助金额:
$ 54.97万 - 项目类别:
Architecture and function of striatal dopamine signaling machinery
纹状体多巴胺信号机制的结构和功能
- 批准号:
10464718 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Architecture and function of striatal dopamine release machinery
纹状体多巴胺释放机制的结构和功能
- 批准号:
9915988 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Dissecting the assembly of neurotransmitter release sites
剖析神经递质释放位点的组装
- 批准号:
10682464 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Architecture and function of striatal dopamine release machinery
纹状体多巴胺释放机制的结构和功能
- 批准号:
9528696 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Dissecting the assembly of neurotransmitter release sites
剖析神经递质释放位点的组装
- 批准号:
10536772 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Architecture and function of striatal dopamine release machinery
纹状体多巴胺释放机制的结构和功能
- 批准号:
9402528 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Dissecting the assembly of neurotransmitter release sites
剖析神经递质释放位点的组装
- 批准号:
10682464 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Dissecting the assembly of vertebrate neurotransmitter release sites-Research Supplements to Promote Diversity in Health-Related Research
剖析脊椎动物神经递质释放位点的组装——促进健康相关研究多样性的研究补充
- 批准号:
9896449 - 财政年份:2017
- 资助金额:
$ 54.97万 - 项目类别:
Molecular Dissection of Active Zone Functions in Neurotransmitter Release
神经递质释放中活性区功能的分子剖析
- 批准号:
10392959 - 财政年份:2014
- 资助金额:
$ 54.97万 - 项目类别:
相似国自然基金
特异阻断α7乙酰胆碱受体的新型芋螺肽先导药物的发现
- 批准号:42376112
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
烟碱型乙酰胆碱受体变异介导普通大蓟马对多杀菌素抗性机制研究
- 批准号:32360663
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
伪旋毛虫乙酰胆碱酯酶破坏肠道ILC2s的ChAT-ACh通路实现免疫逃逸的机制研究
- 批准号:32302960
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胆碱能神经元单囊泡胞吐释放乙酰胆碱的多维度电化学分析及应用研究
- 批准号:22374005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
慢性应激诱导肺上皮分泌乙酰胆碱重塑乳腺癌肺转移前微环境的机制研究
- 批准号:82303386
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Autonomic Nerve Activity and Paroxysmal Atrial Fibrillation
自主神经活动与阵发性心房颤动
- 批准号:
7822294 - 财政年份:2009
- 资助金额:
$ 54.97万 - 项目类别:
Autonomic Nerve Activity and Paroxysmal Atrial Fibrillation
自主神经活动和阵发性心房颤动
- 批准号:
7664883 - 财政年份:2002
- 资助金额:
$ 54.97万 - 项目类别:
Autonomic Nerve Activity and Paroxysmal Atrial Fibrillation
自主神经活动和阵发性心房颤动
- 批准号:
7258657 - 财政年份:2002
- 资助金额:
$ 54.97万 - 项目类别:
Autonomic Nerve Activity and Paroxysmal Atrial Fibrillation
自主神经活动与阵发性心房颤动
- 批准号:
7895835 - 财政年份:2002
- 资助金额:
$ 54.97万 - 项目类别: