mRNA-containing fibrous conduits for repair of long-gap peripheral nerve injury
含有 mRNA 的纤维导管用于修复长间隙周围神经损伤
基本信息
- 批准号:10588480
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AllograftingAutologousAutologous TransplantationBiocompatible MaterialsCellsChemicalsChicagoClinicalClinical MedicineCollaborationsComplications of Diabetes MellitusDNADefectDevelopmentDiabetes MellitusDiabetic NeuropathiesDiseaseDistalDrug Delivery SystemsExtracellular MatrixFiberFosteringGrowth FactorHarvestHealthImmunosuppressionInfiltrationInjuryInterdisciplinary StudyInvestigationLesionMacrophageMessenger RNAMilitary PersonnelModelingMorbidity - disease rateNatural regenerationNerveNerve RegenerationNerve TissueNeuritesNeurotrophin 3OutcomePatientsPeripheralPeripheral NervesPeripheral Nervous System DiseasesPeripheral nerve injuryPharmaceutical PreparationsPolymersPre-Clinical ModelPreparationProceduresProcessProductionProteinsPublicationsRattusRecoveryRecovery of FunctionRegenerative responseResearchResearch InstituteSchwann CellsScienceShapesSiteSpinal GangliaSurfaceSurgical suturesTestingTissue DonorsTissue EngineeringTissuesUnited StatesVeteransWorkaxon growthaxon regenerationbiodegradable polymerbioscaffoldcell growthcell motilitycomorbiditydesigndisabilityeffectiveness evaluationexperimental studyimplantationimprovedin vivo ModelinjuredinnovationmRNA deliverymilitary health systemmilitary veterannerve autograftnerve gapnerve injurynerve repairneuralnovelnovel strategiesperformance siteperipheral nerve regenerationperipheral nerve repairpoly-L-lactic acidpre-clinicalprotein expressionprototyperegenerativerepairedresponsescaffoldsciatic nervesmall moleculestem cellssural nervetooltumor
项目摘要
Project Summary/Abstract
Peripheral nerve injury remains a significant problem in the United States and among the Veteran population.
Even after decades of research, there are few clinically available approaches to treat long-gap peripheral nerve
injury. Often, long-gap peripheral nerve repair is facilitated through harvest and placement of sural nerve
autografts into the injury site. Sural nerve isolation induces donor site morbidity, and some patients are unable
to donate neural tissue due to other co-morbidities (such as diabetes). As alternatives to the autografts, nerve
allografts and biomaterial scaffolds have emerged as possible approaches to supplant the autograft. However,
allografts require extensive decellularization processes, and it is challenging to find size-matched allografts for
patients. Biomaterial conduits can be shaped into appropriate sizes. Many biomaterial conduits lack sufficient
extracellular matrix to promote extensive regeneration of axons. In total, autograft, allograft, and biomaterial
strategies routinely fail to completely rescue lost function. Thus, new strategies are needed to advance the
field. Biomaterial conduits that consist of aligned, electrospun fibers robustly promote axonal regeneration in
preclinical models of peripheral nerve injury. Fibrous materials are produced using synthetic, degradable
polymers that contain no extracellular matrix. Schwann cells migrating into the injury site are responsible for
producing sufficient ECM to foster robust regeneration. Unfortunately, Schwann cells immediately after
peripheral nerve injury reduce their production of key growth factors, such as neurotrophin-3 (NT-3). Therefore,
Schwann cells are unable to produce sufficient factors to create ECM and growth factors to robustly induce
regeneration. Inclusion of exogenous stem cells and Schwann cells that release regenerative factors or use of
biomaterials that release growth factors improve regeneration in preclinical models. However, cellular explants
from donor tissue require immunosuppression, and it is difficult to release proteins from degradable polymers
(which typically require harsh chemicals for polymer synthesis). Harsh chemicals used to fabricate biomaterial
scaffolds denature growth factors, requiring investigation of alternative approaches. In this SPiRE application,
we propose to develop mRNA-releasing fibrous scaffolds and assess the ability of the mRNA-releasing
scaffolds to promote peripheral regeneration in a pre-clinical injury model. In total, the development of new
biomaterial approaches to treat peripheral nerve injury may lead to new tools capable of promoting robust
peripheral nerve regeneration for the Veteran population.
项目概要/摘要
周围神经损伤在美国和退伍军人群体中仍然是一个重大问题。
即使经过数十年的研究,临床上可用于治疗长间隙周围神经的方法仍然很少
受伤。通常,通过收获和放置腓肠神经来促进长间隙周围神经修复
将自体移植物移植到损伤部位。腓肠神经隔离会导致供体部位发病,一些患者无法进行
由于其他合并症(例如糖尿病)而捐献神经组织。作为自体移植物的替代品,神经
同种异体移植物和生物材料支架已成为替代自体移植物的可能方法。然而,
同种异体移植需要广泛的脱细胞过程,并且找到尺寸匹配的同种异体移植物具有挑战性
患者。生物材料导管可以成形为适当的尺寸。许多生物材料导管缺乏足够的
细胞外基质促进轴突的广泛再生。总共有自体移植、同种异体移植和生物材料
策略通常无法完全挽救丧失的功能。因此,需要新的策略来推进
场地。由排列整齐的电纺纤维组成的生物材料导管可强有力地促进轴突再生
周围神经损伤的临床前模型。纤维材料是使用合成的、可降解的材料生产的
不含细胞外基质的聚合物。雪旺细胞迁移到损伤部位负责
产生足够的 ECM 以促进强劲的再生。不幸的是,施万细胞立即
周围神经损伤会减少关键生长因子的产生,例如神经营养蛋白-3 (NT-3)。所以,
雪旺细胞无法产生足够的因子来产生 ECM 和生长因子来强力诱导
再生。包含释放再生因子的外源干细胞和雪旺细胞或使用
释放生长因子的生物材料可改善临床前模型的再生。然而,细胞外植体
来自供体组织的蛋白质需要免疫抑制,并且很难从可降解聚合物中释放蛋白质
(通常需要刺激性化学品来进行聚合物合成)。用于制造生物材料的刺激性化学品
支架会使生长因子变性,需要研究替代方法。在此 SPiRE 应用程序中,
我们建议开发mRNA释放纤维支架并评估mRNA释放的能力
在临床前损伤模型中促进外周再生的支架。总体而言,新开发
治疗周围神经损伤的生物材料方法可能会产生能够促进强健的新工具
退伍军人群体的周围神经再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan J. Gilbert其他文献
Construction of an Elastin-like Polypeptide Gene in a High Copy Number Plasmid Using a Modified Method of Recursive Directional Ligation
使用改进的递归定向连接方法在高拷贝数质粒中构建弹性蛋白样多肽基因
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Derek W. Nelson;Alexander Connor;Yu Shen;Ryan J. Gilbert - 通讯作者:
Ryan J. Gilbert
Delivery of TGFβ3 from Magnetically Responsive Coaxial Fibers Reduces Spinal Cord Astrocyte Reactivity In Vitro.
从磁响应同轴纤维传递 TGFβ3 可降低体外脊髓星形胶质细胞的反应性。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jessica L Funnell;Jasper Fougere;D. Zahn;Silvio Dutz;Ryan J. Gilbert - 通讯作者:
Ryan J. Gilbert
Cells Tissues Organs
细胞组织器官
- DOI:
10.1159/issn.1422-6405 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
L. Bartolo;Ryan J. Gilbert;Guojun Sheng;George J. Christ;N. Vrana - 通讯作者:
N. Vrana
Prelims
预赛
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.7
- 作者:
Ryan J. Gilbert;NY Usa Gujon Troy;Sheng;Japan Christoph Kumamoto;Göttingen Germany Stefan Viebahn;Tübingen Germany Kacey G Liebau;Marra;S. Yip;N. Wang;R. Sugimura;Hong Kong - 通讯作者:
Hong Kong
Formulation of benzoxaborole drugs in PLLA: from materials preparation toin vitrorelease kinetics and cellular assays
- DOI:
10.1039/c5tb02258d - 发表时间:
2015-11 - 期刊:
- 影响因子:7
- 作者:
Saad Sene;Joshua McLane;Nicholas Schaub;Sylvie Bégu;P. Hubert Mutin;Lee Ligon;Ryan J. Gilbert;Danielle Laurencin - 通讯作者:
Danielle Laurencin
Ryan J. Gilbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan J. Gilbert', 18)}}的其他基金
Development of Poly (pro-curcumin) Polymer Coatings to Improve Cortical Electrode Biocompatibility
开发聚(姜黄素原)聚合物涂层以改善皮质电极生物相容性
- 批准号:
10543083 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development of Poly (pro-curcumin) Polymer Coatings to Improve Cortical Electrode Biocompatibility
开发聚(姜黄素原)聚合物涂层以改善皮质电极生物相容性
- 批准号:
10187720 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development of Poly (pro-curcumin) Polymer Coatings to Improve Cortical Electrode Biocompatibility
开发聚(姜黄素原)聚合物涂层以改善皮质电极生物相容性
- 批准号:
10352198 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enhanced Neuroprotection Following Acute SCI Using Fibrous Materials
使用纤维材料增强急性 SCI 后的神经保护
- 批准号:
9265525 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Development of Biomaterials that Release Therapeutic Agents to Modulate Inflammat
开发释放治疗剂来调节炎症的生物材料
- 批准号:
8192640 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Development of Biomaterials that Release Therapeutic Agents to Modulate Inflammat
开发释放治疗剂来调节炎症的生物材料
- 批准号:
7826975 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似国自然基金
自体无创干细胞线粒体移植改善高龄IVF女性早期胚胎质量的有效性及机制研究
- 批准号:82301958
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
源于临床级人拓展多能性干细胞的自体线粒体移植对卵母细胞受精及早期胚胎发育的改善效应和作用机制研究
- 批准号:82301872
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自体线粒体移植通过自噬改善一碳代谢甲硫氨酸循环而促进早期胚胎DNA甲基化重建的机制研究
- 批准号:82371705
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自体肝细胞体外基因编辑治疗威尔逊氏病及细胞移植后组织定植研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自体骨-骨膜移植术相关的软骨修复和界面整合的机制研究
- 批准号:82272482
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:面上项目
相似海外基金
The Neurospan Bridge: A Device for Peripheral Nerve Repair
Neurospan 桥:一种用于周围神经修复的装置
- 批准号:
10515280 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluation of growth potential of ice-free vitrified heart valves in a pediatric porcine model.
评估小儿猪模型中无冰玻璃化心脏瓣膜的生长潜力。
- 批准号:
10696568 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The role of the inflammatory microenvironment in Acellular Nerve Allografts (ANAs) repairing nerve gaps
炎症微环境在无细胞神经同种异体移植物(ANA)修复神经间隙中的作用
- 批准号:
10678384 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
-- - 项目类别: