In vivo delivery of engineered tRNAs for suppression of nonsense mutations
体内递送工程化 tRNA 以抑制无义突变
基本信息
- 批准号:10583472
- 负责人:
- 金额:$ 67.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-10 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectAmino AcidsAminoglycosidesAnticodonBacterial InfectionsBar CodesBiological AvailabilityCell Culture TechniquesCellsChargeChestChloride ChannelsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodon NucleotidesComplementary DNACultured CellsCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNADNA cassetteData SetDiseaseEffectivenessElectrophysiology (science)ElectroporationEngineeringEpithelial CellsExhibitsFamily suidaeFluorescent in Situ HybridizationGene DeliveryGenesGenetic DiseasesGenetic TranscriptionGenomeGenomicsGoalsHereditary DiseaseHomeostasisHumanHuman GeneticsImmunofluorescence ImmunologicIn VitroInbred CFTR MiceInfectionLengthLibrariesLiquid substanceLungMapsMeasuresMediatingMethodsModelingMucous body substanceMusMutant Strains MiceMutationNonsense MutationNonsense-Mediated DecayNucleotidesPersonsPharmaceutical PreparationsPhenotypePhysiologic pulsePlasmidsPositioning AttributeProtein TruncationProteinsQuantitative Reverse Transcriptase PCRReporterReporter GenesSafetySiteSpecificityStructureTechnologyTerminator CodonTherapeuticTissuesToxic effectTranscriptTransfer RNATranslatingTranslation ProcessUnited StatesViscosityWestern BlottingWild Type MouseWorkairway epitheliumcell typedesigndisease-causing mutationeffective therapyeffectiveness evaluationefficacy testingelectric fieldexpression vectorgene therapyimprovedin vivoloss of functionmRNA ExpressionmRNA Transcript Degradationmutantnanoparticlenephrotoxicitynovelototoxicityporcine modelprematureprotein complexprotein functionribosome profilingsmall moleculetraffickingtranscriptometransgene expressionvector
项目摘要
Abstract: Nonsense mutations change an amino acid codon to a premature termination codon (PTC), resulting
in a defective truncated protein and severe forms of disease. Nonsense mutations account for greater than ten
percent of all genetic diseases, accounting for nearly 1,000 genetic human disorders, including cystic fibrosis
(CF). Indeed, 10% of people with CF have nonsense mutations (Type 1 mutations) that lead to premature
truncation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein and significant loss of
transcripts due to nonsense mediated decay (NMD). The most common nonsense mutations include G542X,
R553X, R1162X and W1282X, which account for 10% of all CF nonsense mutations, result in loss of CFTR
function and the most severe CF phenotypes. The CFTR protein is a chloride channel whose absence in CF
alters normal homeostasis of lung lining fluid, resulting in highly viscous mucus that allows bacterial infection
and ultimately lethal infections. Correction of between 10 and 15% of the mutant CFTR in the lung is predicted
to be the threshold for effective treatment of the disease. While aminoglycosides and non-aminoglycoside small-
molecules have been developed and allow readthrough of PTCs, ototoxicity and nephrotoxicity with extended
use in the case of aminoglycosides and poor activity for the other drugs has restricted their use clinically. We
have recently developed a library of Anti-Codon Edited (ACE)-tRNAs that recognize and promote read-through
of all `in-frame' PTCs. Each of the ACE-tRNAs has a single site mutation that recognizes the PTC but the ACE-
tRNA is charged with an amino acid to readthrough the PTC. We have taken advantage of the small tRNA
expression cassette (~72 bp), and generated several compact DNA vectors, we call minivectors. With a library
of >500 ACE-tRNAs, we can insert any desired amino acid into any PTC. We have shown that this approach
works with high efficiency both in vitro and in vivo in rescuing PTC-containing luminescent reporter genes, as
well as G542X-, R1162X- and W1282X-CFTR within the genomic context in CRISPRed 16HBE14o- cells leading
to correction of both NMD and CFTR protein function. Our goal is to test the efficacy, persistence of action and
safety of ACE-tRNAs delivered as minivectors for PTC readthrough and correction in human airway epithelial
PTC cell culture models and in vivo in lung of pig and CFTR PTC mutant mice. To deliver these ACE-tRNA to
the lungs of mice and pigs, we will use transthoracic electroporation which has been shown to be safe, simple,
and highly efficient at gene delivery to the lung, including the airways. The overarching goal is to determine the
therapeutic promise of ACE-tRNAs for treatment of nonsense associated diseases.
摘要:无义突变将氨基酸密码子改变为提前终止密码子(PTC),导致
有缺陷的截短蛋白质和严重的疾病。无义突变占十余种
占所有遗传病的百分比,占近 1,000 种人类遗传性疾病,包括囊性纤维化
(CF)。事实上,10% 的 CF 患者存在无义突变(1 型突变),这些突变会导致早产
囊性纤维化跨膜电导调节蛋白(CFTR)的截短和显着丧失
由于无义介导的衰变(NMD)而导致的转录本。最常见的无义突变包括 G542X、
R553X、R1162X 和 W1282X 占所有 CF 无义突变的 10%,导致 CFTR 丢失
功能和最严重的 CF 表型。 CFTR 蛋白是一种氯离子通道,CF 中不存在该蛋白
改变肺内壁液体的正常稳态,导致粘液高度粘稠,导致细菌感染
并最终导致致命的感染。预计肺中 10% 至 15% 的突变 CFTR 会得到纠正
是有效治疗该疾病的阈值。而氨基糖苷类和非氨基糖苷类小
分子已经开发出来,可以读取 PTC、耳毒性和肾毒性,并具有扩展
氨基糖苷类药物的使用以及其他药物的活性较差限制了其临床使用。我们
最近开发了一个反密码子编辑 (ACE)-tRNA 库,可以识别并促进通读
所有“框架内”PTC。每个 ACE-tRNA 都有一个单位点突变,可以识别 PTC,但 ACE-tRNA 可以识别 PTC。
tRNA 带有氨基酸,可读取 PTC。我们利用了小 tRNA
表达盒(~72 bp),并生成了几个紧凑的 DNA 载体,我们称之为微型载体。有图书馆
超过 500 个 ACE-tRNA,我们可以将任何所需的氨基酸插入到任何 PTC 中。我们已经证明这种方法
在体外和体内均能高效地拯救含有 PTC 的发光报告基因,如
以及 CRISPRed 16HBE14o- 细胞基因组背景中的 G542X-、R1162X- 和 W1282X-CFTR
校正 NMD 和 CFTR 蛋白功能。我们的目标是测试行动的有效性、持久性和
以微型载体形式提供的 ACE-tRNA 用于人气道上皮细胞 PTC 通读和校正的安全性
猪和 CFTR PTC 突变小鼠肺中的 PTC 细胞培养模型和体内。将这些 ACE-tRNA 递送至
对于小鼠和猪的肺部,我们将使用经胸腔电穿孔,这已被证明是安全、简单的,
并且能够高效地将基因递送至肺部(包括气道)。总体目标是确定
ACE-tRNA 在治疗无意义相关疾病方面的治疗前景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lueck其他文献
John Lueck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lueck', 18)}}的其他基金
Mechanism of Skeletal Muscle Calcium Dysregulation in Myotonic Dystrophy
强直性肌营养不良骨骼肌钙失调的机制
- 批准号:
10679063 - 财政年份:2022
- 资助金额:
$ 67.64万 - 项目类别:
In vivo delivery of engineered tRNAs for suppression of nonsense mutations
体内递送工程化 tRNA 以抑制无义突变
- 批准号:
10390358 - 财政年份:2021
- 资助金额:
$ 67.64万 - 项目类别:
In vivo delivery of engineered tRNAs for suppression of nonsense mutations
体内递送工程化 tRNA 以抑制无义突变
- 批准号:
10207977 - 财政年份:2021
- 资助金额:
$ 67.64万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiCMV NIa-Pro 111位氨基酸对致病性的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Elucidating function of disease-related SAMD9L mutations in hematopoiesis
阐明疾病相关 SAMD9L 突变在造血中的功能
- 批准号:
10644725 - 财政年份:2023
- 资助金额:
$ 67.64万 - 项目类别:
The roles of fosfomycin resistant subpopulations of Escherichia coli in urinary tract infection.
大肠杆菌磷霉素耐药亚群在尿路感染中的作用。
- 批准号:
10603417 - 财政年份:2023
- 资助金额:
$ 67.64万 - 项目类别:
Metabolites regulating macrophage function in colorectal cancer
调节结直肠癌巨噬细胞功能的代谢物
- 批准号:
10727502 - 财政年份:2023
- 资助金额:
$ 67.64万 - 项目类别:
Exploiting translation elongation for improved biologics manufacturing
利用平移伸长来改进生物制品的制造
- 批准号:
10760927 - 财政年份:2023
- 资助金额:
$ 67.64万 - 项目类别:
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
- 批准号:
10912318 - 财政年份:2023
- 资助金额:
$ 67.64万 - 项目类别: