Circadian SCN-Liver Axis in the Neuroendocrine Response to Calorie Restriction
昼夜节律 SCN-肝轴对热量限制的神经内分泌反应
基本信息
- 批准号:10585791
- 负责人:
- 金额:$ 52.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:ARNTL geneAblationAcetylationBehavioralBioenergeticsBody TemperatureBrainCRISPR/Cas technologyCaloric RestrictionCell RespirationCellsCommunicationDarknessDeacetylaseDeacetylationDietDisinhibitionEpigenetic ProcessExhibitsFastingGeneticGenetic TranscriptionGoalsHealthHealth BenefitHepaticHomeostasisHypothalamic structureKnock-in MouseLactobacillus brevisLightLinkLiverMaintenanceMammalsMedial Dorsal NucleusMetabolicMetabolic PathwayMetabolismMitochondriaMolecularMusMutant Strains MiceNADHNADH oxidaseNeuronsNeurosecretory SystemsNicotinamide adenine dinucleotideNutrientNutrient availabilityOutputOxidation-ReductionPacemakersPathway interactionsPeriodicityPeripheralPhysiological AdaptationPost-Translational Protein ProcessingProtocols documentationPublishingReactionResistanceRespirationRoleSIRT1 geneSignal TransductionSleepSleep Wake CycleSystemTestingThermogenesisTissuesWatercircadiancircadian pacemakerdetection of nutrientfeedinggain of functiongenetic approachgenetic manipulationimprovedinnovationloss of functionmimeticsneural circuitprogramsresponsesleep regulationsuprachiasmatic nucleustool
项目摘要
In mammals, the hypothalamic pacemaker clock synchronizes peripheral tissue clocks to temporally partition
oxidative and reductive metabolic pathways to align fuel utilization with nutrient availability. Yet how the circadian
clock in brain and peripheral tissues integrates nutrient state with transcription to promote energy conservation
and metabolic homeostasis during sleep and in nutrient scarce conditions remains obscure. An exciting clue as
to how nutrient signals control circadian transcription emerged from the discovery in our group and others that
nicotinamide adenine dinucleotide (NAD+) and the NAD+-dependent deacetylase SIRT1 regulate circadian
behavioral and mitochondrial rhythms through posttranslational modification of the core clock repressor PER2,
indicating that NAD+-SIRT1 controls clock cycles within both neurons and peripheral cells. Interconversion of
NAD+ with its reduced form NADH during redox reactions is dependent upon nutrient state. In new results
published after our first submission, we show that NADH accumulation in liver during healthful calorie restriction
inhibits SIRT1 and reduces daytime body temperature and oxidative metabolism. Surprisingly, reducing NADH
levels through hepatic transduction of the water-forming NADH oxidase Lactobacillus brevis (LbNOX) disinhibits
SIRT1 and augments oxidative cycles of metabolism and transcription. Further, our newly-generated PER2K680Q
acetyl-mimetic knockin mice, which are resistant to SIRT1-induced deacetylation, exhibit profound period
lengthening, while clock ablation in the suprachiasmatic nucleus (SCN) abrogates rhythmic feeding and
thermogenesis. We are now poised with innovative genetic tools and circadian protocols to dissect how the
circadian clock promotes energy constancy during sleep and in adaptation to calorie restriction at the level of the
liver (Aim 1) and hypothalamic pacemaker neurons (Aim 2). Aim 1 will specifically test the hypothesis that nutrient
sensing by the clock involves NAD(H)-SIRT1 signaling. We propose to dissect the role of redox state in clock
function and metabolism during sleep and calorie restriction by genetically manipulating NAD(H) levels using
LbNox in combination with hepatic clock ablation or PER2K680Q acetyl-mimetic knockin mice. Aim 2 will examine
the role of hypothalamic pacemaker neuron subtypes in synchronizing thermogenesis, feeding, and metabolic
rhythms with sleep and in the adaptive response to calorie restriction by utilizing an innovative combination of
CRISPR-Cas9 clock ablation, loss and gain of function studies, and projection-based chemogenetic manipulation
of pacemaker neurons. Collectively, our proposed studies will elucidate circadian mechanisms involved in
maintenance of energy constancy across the sleep-wake cycle and how clock adaptations contribute to health
benefits of hypocaloric diet.
在哺乳动物中,下丘脑起搏器时钟同步外周组织时钟以进行时间分区
氧化和还原代谢途径,使燃料利用率与营养物质可用性保持一致。然而昼夜节律如何
大脑和周围组织中的时钟将营养状态与转录结合起来,以促进能量保存
睡眠期间和营养匮乏条件下的代谢稳态仍然不清楚。一个令人兴奋的线索
我们小组和其他人的发现揭示了营养信号如何控制昼夜节律转录
烟酰胺腺嘌呤二核苷酸 (NAD+) 和 NAD+ 依赖性脱乙酰酶 SIRT1 调节昼夜节律
通过核心时钟抑制子 PER2 的翻译后修饰来调节行为和线粒体节律,
表明 NAD+-SIRT1 控制神经元和外周细胞内的时钟周期。相互转换
NAD+ 及其还原形式 NADH 在氧化还原反应过程中取决于营养状态。在新结果中
在我们第一次提交后发表的文章中,我们表明健康热量限制期间肝脏中 NADH 的积累
抑制 SIRT1 并降低白天体温和氧化代谢。令人惊讶的是,减少 NADH
通过肝脏转导形成水的 NADH 氧化酶来抑制短乳杆菌 (LbNOX) 的水平
SIRT1 并增强代谢和转录的氧化循环。此外,我们新生成的 PER2K680Q
乙酰模拟敲入小鼠对 SIRT1 诱导的脱乙酰化具有抵抗力,表现出深刻的周期
延长,同时视交叉上核(SCN)的时钟消融消除了节律性进食和
生热作用。我们现在准备使用创新的遗传工具和昼夜节律协议来剖析如何
生物钟促进睡眠期间的能量恒定以及适应卡路里限制水平
肝脏(目标 1)和下丘脑起搏神经元(目标 2)。目标 1 将专门检验以下假设:营养素
时钟传感涉及 NAD(H)-SIRT1 信号传输。我们建议剖析氧化还原态在时钟中的作用
通过基因操纵 NAD(H) 水平来限制睡眠期间的功能和代谢以及卡路里限制
LbNox 与肝时钟消融或 PER2K680Q 乙酰模拟敲入小鼠组合。目标 2 将检查
下丘脑起搏器神经元亚型在同步生热、进食和代谢中的作用
通过利用创新的组合来调节睡眠节律和对卡路里限制的适应性反应
CRISPR-Cas9 时钟消融、功能丧失和获得研究以及基于预测的化学遗传学操作
起搏器神经元。总的来说,我们提出的研究将阐明涉及的昼夜节律机制
维持整个睡眠-觉醒周期的能量恒定以及生物钟适应如何促进健康
低热量饮食的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Bass其他文献
Joseph Bass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Bass', 18)}}的其他基金
Integration of Feeding Time and Glucose Metabolism by the Circadian Gene Network
昼夜节律基因网络整合进食时间和葡萄糖代谢
- 批准号:
10490335 - 财政年份:2021
- 资助金额:
$ 52.84万 - 项目类别:
Cross-regulation of Immunometabolism and Circadian Pathways in Obesity Pathophysiology
肥胖病理生理学中免疫代谢和昼夜节律途径的交叉调节
- 批准号:
10390430 - 财政年份:2021
- 资助金额:
$ 52.84万 - 项目类别:
Cross-regulation of Immunometabolism and Circadian Pathways in Obesity Pathophysiology
肥胖病理生理学中免疫代谢和昼夜节律途径的交叉调节
- 批准号:
10597527 - 财政年份:2021
- 资助金额:
$ 52.84万 - 项目类别:
Integration of Feeding Time and Glucose Metabolism by the Circadian Gene Network
昼夜节律基因网络整合进食时间和葡萄糖代谢
- 批准号:
10366269 - 财政年份:2021
- 资助金额:
$ 52.84万 - 项目类别:
Integration of Feeding Time and Glucose Metabolism by the Circadian Gene Network
昼夜节律基因网络整合进食时间和葡萄糖代谢
- 批准号:
10668512 - 财政年份:2021
- 资助金额:
$ 52.84万 - 项目类别:
Bioenergetic Mechanisms Underlying Circadian Dietary Intervention
昼夜节律饮食干预的生物能量机制
- 批准号:
10661568 - 财政年份:2019
- 资助金额:
$ 52.84万 - 项目类别:
Bioenergetic Mechanisms Underlying Circadian Dietary Intervention
昼夜节律饮食干预的生物能量机制
- 批准号:
10426118 - 财政年份:2019
- 资助金额:
$ 52.84万 - 项目类别:
Bioenergetic Mechanisms Underlying Circadian Dietary Intervention
昼夜节律饮食干预的生物能量机制
- 批准号:
10018627 - 财政年份:2019
- 资助金额:
$ 52.84万 - 项目类别:
Bioenergetic Mechanisms Underlying Circadian Dietary Intervention
昼夜节律饮食干预的生物能量机制
- 批准号:
10165455 - 财政年份:2019
- 资助金额:
$ 52.84万 - 项目类别:
The Circadian System as a Neuronal Regulator of Feeding Time and Body Weight Setpoint
昼夜节律系统作为喂养时间和体重设定值的神经调节器
- 批准号:
9750060 - 财政年份:2018
- 资助金额:
$ 52.84万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Epigenetic and non-epigenetic role of SIRT1 in fluoride-induced cell stress.
SIRT1 在氟化物诱导的细胞应激中的表观遗传和非表观遗传作用。
- 批准号:
10823889 - 财政年份:2023
- 资助金额:
$ 52.84万 - 项目类别:
Genetic and molecular mechanisms of Xbp-1 mediated salivary gland development and differentiation
Xbp-1介导唾液腺发育和分化的遗传和分子机制
- 批准号:
10678146 - 财政年份:2023
- 资助金额:
$ 52.84万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 52.84万 - 项目类别:
Investigating essential chromatin regulators in cancers with SWI/SNF mutations
研究具有 SWI/SNF 突变的癌症中的必需染色质调节因子
- 批准号:
10607451 - 财政年份:2023
- 资助金额:
$ 52.84万 - 项目类别:
The stage-specific regulation of ameloblastin and enamelin by the distinct nuclear factors
不同核因子对成釉素和釉质的阶段特异性调节
- 批准号:
10804126 - 财政年份:2023
- 资助金额:
$ 52.84万 - 项目类别: