Mapping ankle-foot stiffness to socket comfort and pressure using a robotic emulator platform to personalize prosthesis function via human-in-the-loop optimization

使用机器人仿真器平台将踝足硬度映射到插座舒适度和压力,通过人机交互优化来个性化假肢功能

基本信息

  • 批准号:
    10584383
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The primary aim of this pilot study is to characterize the relationships between prosthetic ankle-foot stiffness, user reported comfort, and residuum-socket interface pressure in Veterans with transtibial amputation, and use these relationships to guide prosthesis optimization to maximize daily comfort. User comfort is of paramount importance to leg prosthesis users and has a direct impact on satisfaction with a prostheses, use or rejection of a prosthesis, and ultimately mobility and independence. Nearly 90% of prosthetic clinical encounters in the US are related to the lower limb, representing the vast majority of delivered prosthetic device interventions. However, surveys suggest that between 33% and 57% of leg prosthesis users report dissatisfaction with comfort while wearing their prosthesis, and 39% indicated that comfort and fit were their biggest concerns with a new prosthesis and a primary reason for changing prosthetists. Moreover, 51% and 37% of Vietnam Veterans and OIF/OEF Service Members reported prosthesis related pain. Importantly, regular use of a prosthesis and satisfaction with its comfort can increase the likelihood of returning to work following lower limb loss and this is a critical factor to Veterans’ community reintegration. Self-perceived comfort is a multifactorial, dynamic, psychophysical construct, but evidence suggests it is influenced by residuum-socket interface pressures. These interface pressures are affected by socket design, but also by prosthesis alignment given its influence on transfer of ground reaction forces through the socket to proximal anatomy. By the same mechanism, prosthesis stiffness should also theoretically affect interface pressures, but this relationship has not been quantified. To this end, prosthesis properties could be tuned to manipulate interface pressures for maximizing comfort. Therefore, the Specific Aims of this study are: 1) Define the maps connecting prosthetic foot stiffness, residuum-socket interface pressures, and user-perceived comfort, and 2) Assess the efficacy of human-in-the-loop optimization to tune prosthetic foot stiffness for minimizing interface pressure independent and in addition to the clinically optimized socket. We will address the study aims through use of novel robotic prosthesis emulator platform that includes a high- performance mechatronic system for rapid, controlled, and high-resolution keel stiffness modulations of a tethered prosthetic ankle-foot end effector. Both aims will involve ten participants with unilateral transtibial amputation. For Aim 1, participants will first undergo fitting and accommodation to the emulator system and protocol, and then walk at steady state under different prosthesis ankle-foot stiffness settings stratified by a certain percentage from a reference value specific to their body mass that reflects a common dynamic elastic response foot. Peak interface pressures and socket comfort will be measured at each stiffness setting to quantify associations between stiffness, comfort, and pressures as assessed through linear mixed modelling and curve fitting. For Aim 2, participants will also undergo fitting and accommodation to the emulator system, and then experience a process known as human-in-the-loop optimization in which the prosthesis keel stiffness will be automatically optimized in real-time using Bayesian control algorithms focused on minimizing an interface pressure cost function and maximizing comfort. In addition to continuous feedback on participant experience, peak pressures, socket comfort, and perceived effort will be compared between the optimized stiffness setting and the reference stiffness setting of Aim 1. [For both aims, lower extremity kinematics will be measured to assess stiffness effects on gait performance.] Results from this study will inform on the clinically important relationships between prosthesis stiffness, interface pressures, and comfort to guide prescription guidelines for maximizing walking comfort in Veteran prosthesis users. Our results will also set the foundation for development of a smart prosthesis through future Merit Awards that automatically implements stiffness adjustments according to pressure biofeedback to maintain long-term Veteran daily comfort, prosthesis use, and independence.
这项试点研究的主要目的是确定假肢踝足刚度之间的关系, 用户报告了经过胫骨截肢的退伍军人的舒适度和残渣窝界面压力,以及使用情况 这些关系指导假肢优化以最大限度地提高用户的日常舒适度是至关重要的。 对腿部假肢使用者的重要性,并直接影响对假肢的满意度、使用或拒绝 在美国,近 90% 的假肢临床病例都涉及到假肢,以及最终的活动性和独立性。 与下肢有关,占所提供的假肢装置干预的绝大多数。 调查显示,33% 至 57% 的腿部假肢使用者表示对舒适度不满意,而 佩戴假肢,39% 的人表示舒适度和贴合度是他们对新假肢最关心的问题 此外,51% 和 37% 的越战退伍军人和 OIF/OEF 也是更换假肢师的主要原因。 服役人员报告了与假肢相关的疼痛,重要的是,定期使用假肢以及对假肢的满意度。 它的舒适度可以增加下肢丧失后重返工作岗位的可能性,这是一个关键因素 退伍军人重新融入社区的自我感知舒适度是一个多因素的、动态的、心理物理学的构建。 但有证据表明它受到残渣槽界面压力的影响。 受接受腔设计的影响,但也受假肢对准的影响,因为它对地面反作用力的传递有影响 通过同样的机制,假体的刚度也应该通过接受腔传递到近端解剖结构。 理论上,假体会影响界面压力,但这种关系尚未被量化。 可以调整属性来控制界面压力,以最大限度地提高舒适度。因此,具体目标是。 这项研究的内容是: 1) 定义连接假足刚度、残基-窝界面压力的图, 和用户感知的舒适度,以及 2) 评估人机交互优化调整假脚的效果 除了临床优化的插座之外,还具有独立于最小化界面压力的刚度。 我们将通过使用新型机器人假肢仿真器平台来实现研究目标,该平台包括一个高 高性能机电系统,用于快速、受控和高分辨率的龙骨刚度调制 这两个目标都将涉及 10 名单侧经胫骨的参与者。 对于目标 1,参与者将首先进行模拟器系统的安装和调节, 协议,然后在不同的假肢踝足刚度设置下以稳定状态行走,按 相对于特定于其体重的参考值的一定百分比,反映了共同的动态弹性 将在每个刚度设置下测量峰值界面压力和插座舒适度以进行量化。 通过线性混合模型和曲线评估刚度、舒适度和压力之间的关联 对于目标2,参与者还将对模拟器系统进行适配和适应,然后。 体验称为“人机交互优化”的过程,其中假肢龙骨刚度将 使用专注于最小化界面的贝叶斯控制算法实时自动优化 压力成本函数和最大化舒适度除了对参与者体验的持续反馈之外, 将在优化的刚度设置之间比较峰值压力、接受腔舒适度和感知力 以及目标 1 的参考刚度设置。 [对于这两个目标,将测量下肢运动学以 评估僵硬对步态表现的影响。] 这项研究的结果将提供临床上重要的信息 假体刚度、界面压力和舒适度之间的关系,以指导处方指南 最大限度地提高资深假肢使用者的行走舒适度,我们的结果也将为发展奠定基础。 智能假肢将通过未来的优异奖自动实施刚度调整 压力生物反馈,以维持长期的退伍军人日常舒适度、假肢使用和独立性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew J. Major其他文献

The Effects of Slope-Adaptive Prosthetic Ankle-Feet on Sloped Gait Performance and Quality in Unilateral Transtibial Prosthesis Users: A Scoping Review
坡度自适应假肢踝足对单侧小腿假肢使用者倾斜步态性能和质量的影响:范围界定综述

Matthew J. Major的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew J. Major', 18)}}的其他基金

Locomotor Response of Persons with Upper Limb Loss to Treadmill Perturbations
上肢丧失者对跑步机扰动的运动反应
  • 批准号:
    10223463
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid Electrical-Mechanical Pump for Vacuum Suspension of Prosthetic Sockets
用于假肢接受腔真空悬挂的混合机电泵
  • 批准号:
    10840054
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid Electrical-Mechanical Pump for Vacuum Suspension of Prosthetic Sockets
用于假肢接受腔真空悬挂的混合机电泵
  • 批准号:
    10088337
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hybrid Electrical-Mechanical Pump for Vacuum Suspension of Prosthetic Sockets
用于假肢接受腔真空悬挂的混合机电泵
  • 批准号:
    10350559
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Locomotor Response of Persons with Upper Limb Loss to Treadmill Perturbations
上肢丧失者对跑步机扰动的运动反应
  • 批准号:
    10013666
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Sensory-Motor Mechanisms Underlying Fall Risk in Transtibial Amputees
小腿截肢者跌倒风险背后的感觉运动机制
  • 批准号:
    9016455
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Sensory-Motor Mechanisms Underlying Fall Risk in Transtibial Amputees
小腿截肢者跌倒风险背后的感觉运动机制
  • 批准号:
    10174728
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Multiple targets for beta adrenergic antagonist mediate wound healing
β 肾上腺素能拮抗剂的多个靶点介导伤口愈合
  • 批准号:
    10482306
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding how Powered Componentry Impacts K2-Level Transfemoral Amputee Gait
了解动力组件如何影响 K2 级经股截肢者步态
  • 批准号:
    10585944
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
  • 批准号:
    10662142
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cardiovascular regeneration and pioneer factors
心血管再生和先锋因素
  • 批准号:
    10649338
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了