Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
基本信息
- 批准号:10581806
- 负责人:
- 金额:$ 42.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAKT Signaling PathwayAddressAgreementAntitumor ResponseAwardBiomedical EngineeringBreast Cancer DetectionBreast Cancer PatientCCL2 geneCXCL10 geneCXCR3 geneCancer cell lineCarcinoma in SituCause of DeathCell LineCell secretionCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCoupledDevelopmentDiagnosisDrug ScreeningDuct (organ) structureE-CadherinEngineeringEnvironmentEpidermal Growth Factor ReceptorExhibitsExperimental ModelsFibronectinsGeneticHeterogeneityHybridsHypoxiaIL7 geneIL8 geneImage AnalysisIn VitroIndividualInterleukin-10Interleukin-15Interleukin-6InvadedKnock-inKnowledgeLabelLeadLeftLinkMaintenanceMalignant - descriptorMalignant NeoplasmsMammographyMatrix MetalloproteinasesMetabolic stressMetastatic breast cancerMicro Array DataMicroarray AnalysisModelingNeoplasm MetastasisNoninfiltrating Intraductal CarcinomaOrganoidsOutcomePI3K/AKTPIK3CG geneParentsPathway interactionsPatientsPeripheralPhenotypePleuralPleural effusion disorderPrognostic MarkerProteinsReproducibilityResolutionRoleSamplingSignal PathwaySignal TransductionSiteSortingSpatial DistributionStimulusStressStructureSystemTestingTherapeuticTimeVariantVimentinVisualizationWomanWorkbreast cancer progressionclinically relevantconfocal imagingcytokinedeep learningdeep learning algorithmdesigneffective therapygene regulatory networkgenetic signaturegenomic profilesimaging approachimprovedin vitro Modelin vivoinfiltrating duct carcinomainnovationmalignant breast neoplasmmetermigrationneoplastic cellnew therapeutic targetnovelovertreatmentparacrinepremalignantpreventprogression riskrho GTP-Binding Proteinsrisk predictiontherapy developmenttreatment strategytumortumor heterogeneity
项目摘要
Abstract
Approximately 20% of breast cancers detected through mammography are pre-invasive Ductal Carcinoma in
situ (DCIS). If left untreated, approximately 20-50% of DCIS will progress to more deadly Invasive Ductal
Carcinoma (IDC). No prognostic biomarkers can reliably predict the risk of progression from DCIS to IDC. Similar
genomic profiles of matched pre-invasive DCIS and IDC suggests that the progression is not driven by genetic
aberrations in DCIS cells, but microenvironmental factors, such as hypoxia and metabolic stress prevalent in
DCIS, may drive the transition. We need innovative models to investigate how to halt steps of DCIS progression
to invasive phenotypes and subsequent metastasis from the primary site. This proposal directly addresses
this unmet need by developing a novel three-dimensional in vitro organoid model that recapitulates key
hallmarks of DCIS to IDC progression: tumor-size induced hypoxia and metabolic stress, tumor heterogeneity
and spontaneous emergence of migratory phenotype in the same parent cells without any additional stimulus. A
tangible advantage of the proposed organoid models is the ability to precisely and reproducibly study how the
hypoxic microenvironment induces tumor migration in real time and in isolation from non-tumor cells present in
vivo, providing unique opportunity to define tumor-intrinsic mechanisms of DCIS to IDC progression.
During July 2018-Feb 2022 ESI MERIT Award period, we have shown that inhibition of tumor-secreted factors
effectively halts organoid migration, while inhibition of hypoxia is effective only within a time window and is
compromised by tumor-to-tumor variation, supporting our notion that hypoxia initiates migratory phenotypes but
does not sustain it. We have also analyzed secretome from metastatic breast cancer pleural effusion showing
significantly higher levels of CCL2/MCP1, CXCL10/IP10, IL-6, IL-8, regulatory IL-10, and IL-7 and IL-15.
Strategies to neutralize these key cytokines may generate anti-tumor responses in the pleural environment.
Microarray analysis of hypoxia-induced migration and secretome-induced migration suggested role of Rho
GTPase and PI3K/AKT signaling pathways in maintaining migration. Our results show that hypoxic organoid
models exhibit partial EMT signatures as early as day 1, which is maintained as these non-migratory organoids
transition to migratory phenotypes.
During the two-year extension period, we will continue 1) to optimize our DCIS models incorporating ductal
structure and other components from DCIS microenvironments; 2) to test new mechanisms linking tumor-intrinsic
hypoxia, partial/hybrid EMT and collective migration; 3) to inhibit signaling mechanisms to halt emergence of
migratory phenotypes.
The successful completion of the proposed work will provide answers to two fundamental questions in the
progression of invasive breast cancer: 1) What causes some DCIS cells to become migratory and develop into
invasive tumors? 2) How and where does the migratory phenotype (IDC) emerge? The mechanistic
understanding gained from these studies will improve diagnosis, lead to the development of treatment strategies
to arrest invasion at the pre-malignant stage, and thus prevent patient overtreatment.
抽象的
在通过乳房 X 光检查检测到的乳腺癌中,大约 20% 是浸润前导管癌
原位(DCIS)。如果不及时治疗,大约 20-50% 的 DCIS 将发展为更致命的侵入性导管
癌症(IDC)。没有预后生物标志物可以可靠地预测从 DCIS 进展为 IDC 的风险。相似的
匹配的侵入前 DCIS 和 IDC 的基因组图谱表明,进展并非由遗传驱动
DCIS 细胞中存在畸变,但微环境因素(例如缺氧和代谢应激)在 DCIS 细胞中普遍存在
DCIS 可能会推动这一转变。我们需要创新模型来研究如何阻止 DCIS 进展
侵袭性表型和随后从原发部位的转移。该提案直接针对
通过开发一种新颖的三维体外类器官模型来满足这一未满足的需求,该模型概括了关键
DCIS 向 IDC 进展的标志:肿瘤大小引起的缺氧和代谢应激、肿瘤异质性
以及在没有任何额外刺激的情况下在相同亲本细胞中自发出现迁移表型。一个
所提出的类器官模型的明显优势是能够精确且可重复地研究
缺氧微环境实时诱导肿瘤迁移,并且与存在于肿瘤细胞中的非肿瘤细胞隔离。
体内,为定义 DCIS 到 IDC 进展的肿瘤内在机制提供了独特的机会。
在 2018 年 7 月至 2022 年 2 月 ESI 优异奖期间,我们发现抑制肿瘤分泌因子
有效地阻止类器官迁移,而抑制缺氧仅在一个时间窗口内有效,并且
受到肿瘤间变异的影响,支持我们的观点,即缺氧启动迁移表型,但
不支持它。我们还分析了转移性乳腺癌胸腔积液的分泌组,显示
CCL2/MCP1、CXCL10/IP10、IL-6、IL-8、调节性 IL-10、IL-7 和 IL-15 水平显着升高。
中和这些关键细胞因子的策略可能会在胸膜环境中产生抗肿瘤反应。
缺氧诱导的迁移和分泌蛋白组诱导的迁移的微阵列分析表明 Rho 的作用
GTPase 和 PI3K/AKT 信号通路在维持迁移中的作用。我们的结果表明,缺氧类器官
模型早在第一天就表现出部分 EMT 特征,这些特征作为这些非迁移类器官得以保留
向迁移表型的转变。
在两年的延长期内,我们将继续 1) 优化我们的 DCIS 模型,纳入导管
DCIS 微环境的结构和其他组件; 2)测试连接肿瘤内在的新机制
缺氧、部分/混合EMT和集体迁移; 3)抑制信号机制以阻止出现
迁移表型。
拟议工作的成功完成将为该领域的两个基本问题提供答案。
浸润性乳腺癌的进展: 1) 是什么导致一些 DCIS 细胞迁移并发展为
侵袭性肿瘤? 2)迁移表型(IDC)如何以及在何处出现?机械论
从这些研究中获得的理解将改善诊断,导致治疗策略的制定
在癌前阶段阻止侵袭,从而防止患者过度治疗。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Molecular Signatures of Distinct Modes of Collective Migration in Response to the Microenvironment Using Three-Dimensional Breast Cancer Models.
使用三维乳腺癌模型识别响应微环境的集体迁移的不同模式的分子特征。
- DOI:
- 发表时间:2021-03-20
- 期刊:
- 影响因子:5.2
- 作者:Ardila, Diana Catalina;Aggarwal, Vaishali;Singh, Manjulata;Chattopadhyay, Ansuman;Chaparala, Srilakshmi;Sant, Shilpa
- 通讯作者:Sant, Shilpa
Interplay between tumor microenvironment and partial EMT as the driver of tumor progression.
肿瘤微环境和部分EMT之间的相互作用作为肿瘤进展的驱动力。
- DOI:
- 发表时间:2021-02-19
- 期刊:
- 影响因子:5.8
- 作者:Aggarwal, Vaishali;Montoya, Catalina Ardila;Donnenberg, Vera S;Sant, Shilpa
- 通讯作者:Sant, Shilpa
P4HA2: A link between tumor-intrinsic hypoxia, partial EMT and collective migration.
P4HA2:肿瘤内在缺氧、部分 EMT 和集体迁移之间的联系。
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Aggarwal, Vaishali;Sahoo, Sarthak;Donnenberg, Vera S;Chakraborty, Priyanka;Jolly, Mohit Kumar;Sant, Shilpa
- 通讯作者:Sant, Shilpa
Mathematical Modeling of Plasticity and Heterogeneity in EMT.
EMT 中可塑性和异质性的数学模型。
- DOI:10.1007/978-1-0716-0779-4_28
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tripathi S;Xing J;Levine H;Jolly MK
- 通讯作者:Jolly MK
Treatment of malignant pleural effusions: the case for localized immunotherapy.
恶性胸腔积液的治疗:局部免疫治疗的案例。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Donnenberg, Albert D;Luketich, James D;Dhupar, Rajeev;Donnenberg, Vera S
- 通讯作者:Donnenberg, Vera S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shilpa Sant其他文献
Shilpa Sant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shilpa Sant', 18)}}的其他基金
Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
- 批准号:
10206058 - 财政年份:2018
- 资助金额:
$ 42.3万 - 项目类别:
Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
- 批准号:
10438709 - 财政年份:2018
- 资助金额:
$ 42.3万 - 项目类别:
Engineered Microenvironments to model effect of size in tumor progression
工程微环境模拟肿瘤进展中大小的影响
- 批准号:
8829249 - 财政年份:2014
- 资助金额:
$ 42.3万 - 项目类别:
Engineered Microenvironments to model effect of size in tumor progression
工程微环境模拟肿瘤进展中大小的影响
- 批准号:
8680848 - 财政年份:2014
- 资助金额:
$ 42.3万 - 项目类别:
相似国自然基金
Odoribacter splanchnicus A3调节肠道菌群并通过TIPE2-AKT-mTOR信号通路调控Th17/Treg分化治疗溃疡性结肠炎的机制研究
- 批准号:82300630
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道“功能真菌”调控血管内皮PI3K/Akt/eNOS信号通路降血压的物质基础与分子机制研究
- 批准号:82370438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
丹黄明目汤通过PI3K/Akt/mTOR信号通路介导细胞自噬在糖尿病视网膜病变中的作用与机制研究
- 批准号:82374525
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SGLT2通过调控PI3K/Akt/mTOR信号通路在糖尿病心肌纤维化中的作用及机制研究
- 批准号:82360163
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于MCP-1/PI3K/Akt信号通路探讨骨癌痛中脊髓星形胶质细胞促进兴奋性神经元活化的机制研究以及骨痛灵方的干预作用
- 批准号:82305346
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dissecting and targeting oncogenic functions of PAK4 in high-risk rhabdomyosarcoma
剖析和靶向 PAK4 在高风险横纹肌肉瘤中的致癌功能
- 批准号:
10577174 - 财政年份:2022
- 资助金额:
$ 42.3万 - 项目类别:
Role of NRF-1 in Estrogen-Induced Breast Cancer Pathogenesis
NRF-1 在雌激素诱导的乳腺癌发病机制中的作用
- 批准号:
8332969 - 财政年份:2012
- 资助金额:
$ 42.3万 - 项目类别:
Role of NRF-1 in Estrogen-Induced Breast Cancer Pathogenesis
NRF-1 在雌激素诱导的乳腺癌发病机制中的作用
- 批准号:
8597927 - 财政年份:2012
- 资助金额:
$ 42.3万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
8902053 - 财政年份:2012
- 资助金额:
$ 42.3万 - 项目类别:
Integrative signaling models to decipher complex cancer phenotypes
解读复杂癌症表型的整合信号模型
- 批准号:
9119778 - 财政年份:2012
- 资助金额:
$ 42.3万 - 项目类别: