Molecular and cellular functions of Ano5 in heart
Ano5在心脏中的分子和细胞功能
基本信息
- 批准号:9035423
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelBiochemical MarkersBiological AssayBiological ProcessCa(2+)-Transporting ATPaseCalciumCardiac MyocytesCardiomyopathiesCell membraneCell physiologyCellsChemicalsChloride ChannelsComplexConfocal MicroscopyDNA Sequence AlterationDYSF geneDataDefectDevelopmentDiseaseDue ProcessDystrophinEmergency SituationExerciseExhibitsFluorescenceFluorescence Resonance Energy TransferGel ChromatographyGenesGoalsHealthHeartHeart DiseasesHeart failureHomeostasisHumanImageImmunofluorescence ImmunologicInjuryInvestigationKnockout MiceLasersLeadLifeLightLipid BilayersMediatingMembraneMembrane ProteinsMetabolicMolecularMusMuscleMuscle CellsMuscular DystrophiesMutationMyocardial dysfunctionMyocardiumOutcomePathologyPatientsPhosphatidylserinesPhysiologicalPhysiological ProcessesPhysiologyPilot ProjectsPlayProcessProtein FamilyProteinsRNA InterferenceRegulationResearchResearch ProposalsReverse Transcriptase Polymerase Chain ReactionRoleSarcoplasmic ReticulumSiteSkeletal MuscleSpectrum AnalysisStressStriated MusclesStructureTestingTherapeuticTransmembrane DomainVesicleWestern BlottingWild Type Mouseannexin A5anoctamin 5channel blockerscoronary fibrosiscrosslinkdesignheart functionhuman diseasein vivointerdisciplinary approachlive cell imagingmouse modelmutantnew therapeutic targetrepairedresearch studyresponseself-renewalsensortherapeutic target
项目摘要
DESCRIPTION (provided by applicant): The plasma membrane integrity is of critical importance for cell homeostasis and function. Physical, chemical or metabolic disruption of the plasma membrane leads to a repair-or-die emergency in the cell. Thus, an efficient plasma membrane repair mechanism is essential for life since disruption of this process due to genetic mutations can result in a number of diseases including muscular dystrophy and associated cardiomyopathy. Previous studies from others and us demonstrated that the membrane repair response in cardiomyocytes is mediated by several proteins including dysferlin and MG53. However, the molecular mechanisms underlying this important physiological process have not been fully defined. Our preliminary data found that anoctamin 5 (Ano5) plays an essential role in membrane repair in myocytes. Ano5 belongs to the anoctamin protein family that includes at least ten proteins all possessing eight transmembrane domains with proved or putative calcium-activated chloride channel (CaCC) functions. Mutations in the ANO5 gene (encoding Ano5) lead to muscular dystrophies in human patients. However, there is little known about the molecular and cellular functions of Ano5 in cardiomyocytes and the molecular mechanisms underlying Ano5-mediated membrane repair remain poorly understood. The long-term goal of this research proposal is to understand the molecular and cellular mechanisms for Ano5 in heart physiology and disease. In pilot studies, we found that Ano5 is primarily localized on the endoplasmic/sarcoplasmic reticulum (ER/SR) and RNAi-silencing of Ano5 shows defective membrane repair in myocytes. Thus, our data present a new biological function for Ano5 in the cellular physiology of muscle cells. In this project, we will focus on testing the hypothesis that Ano5 is involved in the calcium-activated chloride channel (CaCC) activity and plays an essential role in plasma membrane repair of cardiomyocytes. Through manipulating expression of Ano5 and the use of live cell imaging, biochemical markers, ex vivo and in vivo animal model studies, our planned experiments will significantly advance understanding of the mechanisms underlying membrane repair of cardiomyocytes, and begin to define potential therapeutic targets for the regulation of membrane repair capacity to treat the diseases associated with abnormal membrane stability. Disrupted plasma membrane integrity underlies a number of diseases including cardiomyopathy. Our project is designed to understand the molecular and cellular functions of Ano5 in muscle physiology and disease. These studies will aid in defining therapeutic target for the treatment of treatment of heart diseases associated with compromised plasma membrane integrity through the regulation of Ano5-mediated membrane repair capacity.
描述(由申请人提供):质膜完整性对于细胞稳态和功能至关重要。质膜的物理、化学或代谢破坏会导致细胞出现修复或死亡的紧急情况。因此,有效的质膜修复机制对于生命至关重要,因为基因突变导致的这一过程的破坏可能导致许多疾病,包括肌营养不良和相关的心肌病。我们和其他人之前的研究表明,心肌细胞的膜修复反应是由包括 Dysferlin 和 MG53 在内的几种蛋白质介导的。然而,这一重要生理过程的分子机制尚未完全明确。我们的初步数据发现 anoctamin 5 (Ano5) 在肌细胞膜修复中发挥重要作用。 Ano5 属于 anoctamin 蛋白家族,该家族包括至少 10 种蛋白,全部具有 8 个跨膜结构域,具有已证实或推定的钙激活氯离子通道 (CaCC) 功能。 ANO5 基因(编码 Ano5)的突变会导致人类患者出现肌肉营养不良。然而,人们对 Ano5 在心肌细胞中的分子和细胞功能知之甚少,并且对 Ano5 介导的膜修复的分子机制也知之甚少。该研究计划的长期目标是了解 Ano5 在心脏生理学和疾病中的分子和细胞机制。在初步研究中,我们发现 Ano5 主要定位于内质/肌浆网 (ER/SR),并且 Ano5 的 RNAi 沉默显示肌细胞中的膜修复缺陷。因此,我们的数据展示了 Ano5 在肌肉细胞的细胞生理学中的新生物学功能。在这个项目中,我们将重点测试 Ano5 参与钙激活氯离子通道 (CaCC) 活性并在心肌细胞质膜修复中发挥重要作用的假设。通过操纵 Ano5 的表达以及使用活细胞成像、生化标记、离体和体内动物模型研究,我们计划的实验将显着促进对心肌细胞膜修复机制的理解,并开始确定潜在的治疗靶点。调节膜修复能力以治疗与膜稳定性异常相关的疾病。质膜完整性破坏是包括心肌病在内的许多疾病的基础。我们的项目旨在了解 Ano5 在肌肉生理学和疾病中的分子和细胞功能。这些研究将有助于通过调节 Ano5 介导的膜修复能力来确定治疗与质膜完整性受损相关的心脏病的治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renzhi Han其他文献
Renzhi Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renzhi Han', 18)}}的其他基金
Base editing of ASGR1 for cardiovascular disease
ASGR1 碱基编辑治疗心血管疾病
- 批准号:
10590146 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Myokine function of MG53 in muscle injury-repair and regeneration
MG53在肌肉损伤修复和再生中的肌因子功能
- 批准号:
10268967 - 财政年份:2017
- 资助金额:
$ 38.5万 - 项目类别:
Molecular and cellular functions of Ano5 in heart
Ano5在心脏中的分子和细胞功能
- 批准号:
8823821 - 财政年份:2015
- 资助金额:
$ 38.5万 - 项目类别:
Molecular and cellular functions of Ano5 in heart
Ano5在心脏中的分子和细胞功能
- 批准号:
8981124 - 财政年份:2015
- 资助金额:
$ 38.5万 - 项目类别:
Mechanisms of Muscle Inflammation in Muscular Dystrophy
肌营养不良症中肌肉炎症的机制
- 批准号:
9271865 - 财政年份:2014
- 资助金额:
$ 38.5万 - 项目类别:
Mechanisms of Muscle Inflammation in Muscular Dystrophy
肌营养不良症中肌肉炎症的机制
- 批准号:
8847225 - 财政年份:2014
- 资助金额:
$ 38.5万 - 项目类别:
Molecular and cellular functions of Ano5 in heart
Ano5在心脏中的分子和细胞功能
- 批准号:
8690963 - 财政年份:2013
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Amnion cell secretome mediated therapy for traumatic brain injury
羊膜细胞分泌组介导的创伤性脑损伤治疗
- 批准号:
10746655 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
POPI: Placenta, Opioids and Perinatal Implications
POPI:胎盘、阿片类药物和围产期影响
- 批准号:
10748428 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
The Effects of Prenatal Thirdhand E-cigarette Exposure on Platelets
产前三手电子烟暴露对血小板的影响
- 批准号:
10759130 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10940417 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别: