Amino acid mimicry: Insights into glyphosate transport and toxicity to mitochondria
氨基酸拟态:深入了解草甘膦转运和线粒体毒性
基本信息
- 批准号:10573869
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-10 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAmino AcidsAnimalsAromatic Amino AcidsAspartateBacteriaBindingBinding ProteinsBiochemicalBrainBypassCell CycleCellsChemical ExposureCytoplasmDNA DamageDataData SetDietDiseaseDown-RegulationEnzymesEvolutionFood ChainFood ContaminationFormulationFutureGenesGeneticGlutamate TransporterGlutamatesGoalsGrowthHealthHerbicidesHumanHuman DevelopmentMalate-Aspartate Shuttle PathwayMalatesMeasuresMetabolic DiseasesMetabolismMitochondriaMitochondrial ProteinsModelingNADHNutrientNutrient availabilityOccupational ExposureOrganOrganismPathway interactionsPenetrationPlantsPreparationRegulationRepressionReproductionResearchResistanceRoleSaccharomyces cerevisiaeSiteStructureSupplementationTestingTimeTissuesToxic effectTransportationUrineYeastscancer typeexperimental studyexposed human populationfungusgenome wide association studyglyphosategut microbiomeinnovationinsightmimicrymitochondrial metabolismmodel organismmutantnervous system disorderpermeasesensorshikimatesurfactanttranscriptomics
项目摘要
Extensive use of glyphosate-based herbicides (GBH) has led to glyphosate entering the food chain, and
causing human sera and urine levels to increase over time. This exposure has led to numerous claims that
glyphosate causes diseases ranging from multiple types of cancer to affecting human development and
reproduction. However, no mechanism of glyphosate import into human cells is known; in yeast, importation
occurs through the glutamate/ aspartate (D/E) transporters due to its structural resemblance. Glyphosate is
thought not to have acute effects on humans because they lack the shikimate pathway that produces aromatic
amino acids (WYF), which is inhibited in the presence of glyphosate, and humans instead acquire aromatic
amino acids through diet or the gut microbiome. The differences in commercial preparations of glyphosate
have complicated the studies because GBHs have surfactants that increase tissue penetration. Yeast can
bypass the inhibition of the shikimate pathway when supplemented with (WYF), which permits the assessment
of the role of surfactants or, more likely, discover the unknown glyphosate targets. Our initial studies have
found that genes regulating mitochondria, DNA damage, and the cell cycle are differentially regulated in GBH
treatments. The long-term goal is to identify the glyphosate transportation mechanisms into cells, the brain,
and other tissues that affect mitochondrial metabolism. This application's objective is to determine how
mitochondrial metabolism is affected by glyphosate alone and in commercial formulations in the model
organism S. cerevisiae. Our central hypothesis is that the transport of glyphosate is due to mimicry of
glutamate and aspartate; thus, it will affect other enzymes that utilize glutamate and aspartate, especially
within the mitochondria. The rationale of this proposal is that mitochondrial effects of glyphosate have a
biochemical basis and will provide a mechanistic understanding of cellular effects in vertebrate species.
Specific aims proposed are 1. Measure the import of glyphosate into different compartments in different
mutants and how adding D/E rescues growth inhibition from glyphosate 2. Measure changes in specific
mitochondrial metabolites (ATP and NADH) in glyphosate treated cells. The proposed research is innovative
because the hypothesis proposed is using unbiased experiments, such as genome-wide association,
transcriptomics, and In-Lab Evolution experiments to determine the mechanism of extra- and intracellular
glyphosate transport using D/E transporters. Glyphosate mimics D/E amino acids in transport, so it likely
affects other enzymes that use D/E, particularly in the mitochondria. In plants, fungi, and bacteria, D/E
transporters have all been implicated in glyphosate transport and glyphosate affecting mitochondrial functions.
While humans do not have the shikimate pathway, they have D/E transporters, and conserved mitochondrial
proteins that use D/E, which may be the off-targets of glyphosate leading to the range of diseases claimed to
have been caused by glyphosate.
草甘膦除草剂(GBH)的广泛使用导致草甘膦进入食物链,并且
导致人体血清和尿液水平随着时间的推移而增加。此次曝光引发了众多争议
草甘膦会导致多种疾病,从多种癌症到影响人类发育和
生殖。然而,草甘膦进入人体细胞的机制尚不清楚。在酵母中,进口
由于其结构相似,通过谷氨酸/天冬氨酸 (D/E) 转运蛋白发生。草甘膦是
人们认为不会对人类产生急性影响,因为它们缺乏产生芳香的莽草酸途径
氨基酸(WYF),在草甘膦的存在下受到抑制,而人类反而获得芳香
通过饮食或肠道微生物组提供氨基酸。草甘膦商品制剂的差异
使研究变得复杂,因为 GBH 具有增加组织渗透性的表面活性剂。酵母罐头
当补充 (WYF) 时,绕过莽草酸途径的抑制,从而允许评估
表面活性剂的作用,或者更有可能发现未知的草甘膦目标。我们的初步研究有
发现调节线粒体、DNA 损伤和细胞周期的基因在 GBH 中受到差异性调节
治疗。长期目标是确定草甘膦进入细胞、大脑、
以及影响线粒体代谢的其他组织。该应用程序的目标是确定如何
线粒体代谢受到模型中单独草甘膦和商业制剂的影响
酿酒酵母生物体。我们的中心假设是草甘膦的转运是由于模仿
谷氨酸和天冬氨酸;因此,它会影响其他利用谷氨酸和天冬氨酸的酶,尤其是
线粒体内。该提案的基本原理是草甘膦对线粒体的影响具有
生物化学基础并将提供对脊椎动物细胞效应的机制理解。
提出的具体目标是 1. 测量草甘膦进入不同区域的不同区域的情况
突变体以及添加 D/E 如何挽救草甘膦的生长抑制 2. 测量特定的变化
草甘膦处理细胞中的线粒体代谢物(ATP 和 NADH)。所提出的研究具有创新性
因为提出的假设是使用无偏见的实验,例如全基因组关联,
转录组学和实验室进化实验以确定细胞外和细胞内的机制
使用 D/E 转运蛋白转运草甘膦。草甘膦在运输过程中模拟 D/E 氨基酸,因此它可能
影响其他使用 D/E 的酶,特别是线粒体中的酶。在植物、真菌和细菌中,D/E
转运蛋白都与草甘膦转运有关,并且草甘膦影响线粒体功能。
虽然人类没有莽草酸途径,但他们有 D/E 转运蛋白和保守的线粒体
使用 D/E 的蛋白质,这可能是草甘膦的脱靶,导致一系列声称可以预防的疾病
是由草甘膦引起的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Gallagher其他文献
Jennifer Gallagher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Gallagher', 18)}}的其他基金
A Systems Approach to Understanding Effects of MCHM on Cellular Metabolism
理解 MCHM 对细胞代谢影响的系统方法
- 批准号:
9099093 - 财政年份:2016
- 资助金额:
$ 7.6万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D-氨基酸对生物膜废水处理系统的影响及调控
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Processivity and Catalytic Mechanism of Aldosterone Synthase
醛固酮合酶的持续合成能力和催化机制
- 批准号:
10600520 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
The roles of fosfomycin resistant subpopulations of Escherichia coli in urinary tract infection.
大肠杆菌磷霉素耐药亚群在尿路感染中的作用。
- 批准号:
10603417 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别: