Decoding the mechanical interactions between tissue layers sculpting organ shape
解码塑造器官形状的组织层之间的机械相互作用
基本信息
- 批准号:10572921
- 负责人:
- 金额:$ 14.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAtlasesBiological ModelsBiologyCalciumCell ShapeCellsCommunitiesComplexCongenital AbnormalityCytoskeletonDevelopmentDevelopmental BiologyDoctor of PhilosophyDrosophila genusElasticityEndodermEnsureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticHealthHeartHeart AbnormalitiesHomeobox GenesHumanImageLasersLearningLeftLightLinkMapsMeasuresMechanical StressMechanicsMediatingMicroscopyMidgutModelingMolecular BiologyMorbidity - disease rateMorphogenesisMuscleOrganOrgan ModelPatternPhasePhysicsPhysiologic pulsePostdoctoral FellowProcessRegulator GenesResearchResolutionRoleShapesSignal TransductionStructureTechniquesTestingTissue imagingTissuesTrainingTranslatingTubeVisceralVisualizationWorkcell behaviorclinical applicationcomputer frameworkcomputerized toolsconstrictiondriving behaviordriving forcegene conservationimaging modalityin silicoin vivomalformationmechanical forcemortalitymutantnoveloptogeneticsphysical modelprogramsspatiotemporal
项目摘要
PROJECT SUMMARY/ABSTRACT
Organ shape is vital for proper function. Malformations in the looping and folding of the heart, for
instance, represent the leading cause of birth defect mortality in humans. Visceral organs rely on the
coordinated activity of multiple laminar tissue layers to fold and coil into targeted shapes. While the community
has learned much about the genetic signals governing cell fates during development, less is understood about
the mechanical stresses and tissue dynamics that translate gene expression into the shapes of organs. This
proposal aims to link hox gene expression to physical forces driving 3D multilayer organ shape change using
the D. melanogaster midgut as a model system.
The midgut begins as a tube of two concentric tissue layers that undergoes a sequence of constrictions
to fold into chambers. Hox genes — conserved master regulators of patterning during development — have
long been known to govern the final shape of this organ, but the mechanical stresses and tissue dynamics
translating hox expression into organ shape have remained elusive. We recently found that organ constrictions
proceed through a mechanical program mediated by calcium pulses in the outer layer, under the control of hox
genes. Advances in light-sheet microscopy now enable live visualization of the whole organ at sub-cellular
resolution during development. Integrating these imaging methods with physics approaches provides the ability
to follow cell dynamics across tissue layers throughout morphogenesis and quantitatively relate genetic
patterning in the tissue to the tissue mechanics and dynamic cellular behaviors driving 3D shape change.
The proposed work aims to first (1) decode the relationship between the hox gene expression pattern to
the downstream pattern of calcium pulses in the midgut. (2) Secondly, a physical model will relate calcium
pulses to tissue-scale mechanical stress, using spatiotemporal maps of calcium activity to constrain an in silico
model of the morphing tissue. Together, these aims will reveal how genetic patterning controls a mechanical
process to sculpt complex shapes in a bilayer organ. (3) Finally, this proposal will address how the midgut
model visceral organ coils into a chiral tube later during development. Recent discoveries of `cell intrinsic'
chirality, in which cytoskeletal machinery breaks left-right symmetry, have proven to provide a major role in
determining organ-scale chirality. The mechanical process by which cell chirality translates into 3D organ-scale
shape change, however, remains largely unknown. By combining the in toto imaging toolkit and molecular
biology approaches mastered during the K99 phase with my expertise in chiral mechanics from my PhD, this
aim will link cellular chirality to the dynamics of organ-scale coiling.
Together, these research aims and the training in biology, microscopy, and modeling during the K99
phase will ensure I am equipped to begin an independent research lab revealing the physical mechanisms
harnessed by biology to sculpt complex shapes of visceral organs.
项目概要/摘要
器官形状对于心脏的正常功能至关重要。
例如,内脏器官是导致人类出生缺陷死亡的主要原因。
多个层状组织层的协调活动,以折叠和卷曲成目标形状。
人们对发育过程中控制细胞命运的遗传信号了解很多,但对以下方面了解较少
将基因表达转化为器官形状的机械应力和组织动力学。
该提案旨在将 hox 基因表达与驱动 3D 多层器官形状变化的物理力联系起来
黑腹果蝇中肠作为模型系统。
中肠开始时是由两个同心组织层组成的管子,经历一系列收缩
折叠成腔室的 Hox 基因——发育过程中保守的模式调节因子——已经
长期以来人们都知道控制该器官的最终形状,但机械应力和组织动力学
我们最近发现,将 hox 表达转化为器官形状仍然难以捉摸。
在 hox 的控制下,执行由外层钙脉冲介导的机械程序
光片显微镜的进步现在可以实现整个器官的亚细胞实时可视化。
将这些成像方法与物理方法相结合提供了能力。
在整个形态发生过程中跟踪跨组织层的细胞动力学,并定量关联遗传
组织中的图案根据组织力学和动态细胞行为驱动 3D 形状变化。
拟议的工作旨在首先 (1) 解码 hox 基因表达模式之间的关系
(2) 其次,物理模型将钙联系起来
脉冲到组织尺度的机械应力,使用钙活性的时空图来约束计算机
这些目标将共同揭示遗传模式如何控制机械。
在双层器官中雕刻复杂形状的过程 (3) 最后,该提案将解决中肠的问题。
在发育后期将内脏器官模型卷入手性管中。“细胞内在”的最新发现。
手性,即细胞骨架机制打破左右对称性,已被证明在
确定器官尺度的手性 细胞手性转化为 3D 器官尺度的机械过程。
然而,通过结合整体成像工具包和分子,形状变化仍然很大程度上未知。
我在 K99 阶段掌握了生物学方法,凭借我的博士学位在手性力学方面的专业知识,这
目标是将细胞手性与器官尺度卷曲的动力学联系起来。
这些研究目标以及 K99 期间生物学、显微镜学和建模方面的培训
阶段将确保我有能力开始一个独立的研究实验室,揭示物理机制
生物学利用它来塑造内脏器官的复杂形状。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TubULAR: tracking in toto deformations of dynamic tissues via constrained maps.
TubULAR:通过约束图跟踪动态组织的全部变形。
- DOI:
- 发表时间:2023-12
- 期刊:
- 影响因子:48
- 作者:Mitchell, Noah P;Cislo, Dillon J
- 通讯作者:Cislo, Dillon J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Prentice Mitchell其他文献
Noah Prentice Mitchell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 14.24万 - 项目类别:
Genome organizer SATB1 function in salivary gland and development and growth
基因组组织者 SATB1 在唾液腺及其发育和生长中的功能
- 批准号:
10593721 - 财政年份:2023
- 资助金额:
$ 14.24万 - 项目类别:
Genome organizer SATB1 function in salivary gland and development and growth
基因组组织者 SATB1 在唾液腺及其发育和生长中的功能
- 批准号:
10593721 - 财政年份:2023
- 资助金额:
$ 14.24万 - 项目类别:
Blink, Lacrimation, and Nociception: Precision Mapping and Integrated Atlas Generation of Corneal Trigeminal Afferents
眨眼、流泪和伤害感受:角膜三叉神经传入的精确绘图和集成图谱生成
- 批准号:
10585769 - 财政年份:2022
- 资助金额:
$ 14.24万 - 项目类别:
3-Dimensional genomic architecture in innate lymphoid cells and allergic inflammation
先天淋巴细胞和过敏性炎症的三维基因组结构
- 批准号:
10417585 - 财政年份:2022
- 资助金额:
$ 14.24万 - 项目类别: