Functional screen for genetic causes of hypoplastic left heart syndrome
左心发育不良综合征遗传原因的功能筛查
基本信息
- 批准号:10572737
- 负责人:
- 金额:$ 21.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAnimal ModelAnimal OrganBiologicalBloodCandidate Disease GeneCardiac OutputCardiac VolumeCause of DeathClustered Regularly Interspaced Short Palindromic RepeatsColorCongenital AbnormalityDangerousnessDetectionDevelopmentDiameterDiseaseDouble Outlet Right VentricleEarly DiagnosisEarly InterventionElementsEmbryoEmbryonic HeartEtiologyExhibitsFoundationsFunctional disorderGene CombinationsGenesGeneticGenetic DiseasesGenetic ModelsGenetic ScreeningGenetic studyGoalsHeartHeart ResearchHuman GeneticsHypoplastic Left Heart SyndromeImageImaging DeviceImaging technologyImpairmentIndividualInfantKnowledgeLaser Scanning MicroscopyLeadLeft ventricular structureLightMediatingMethodologyMethodsMicroscopeMicroscopyModelingMolecularMorphologyMusMutateMyocardial dysfunctionPathogenesisPathologicPerformancePhenotypePhysiologyPopulationProcessPublic HealthPumpRanaRapid screeningResearchResolutionRoleScanningSchemeSensitivity and SpecificityShortening FractionSpecimenSpeedStructureStudy modelsSystemTadpolesTestingTimeVariantVentricularVentricular Septal DefectsVisualizationWorkcandidate identificationcardiogenesiscausal variantcongenital heart disorderexperimental studyheart functionhuman diseasein vivoinnovationlensmalformationmetermicroCTmillimetermillisecondmulti-photonnovelspatiotemporalstructural heart diseasetooltranscription factor
项目摘要
PROJECT SUMMARY
Congenital heart diseases (CHDs) are the most common type of birth defect and impact about 1% of the popu-
lation worldwide. Among CHDs, hypoplastic left heart syndrome (HLHS), in which the left ventricle that pumps
oxygenated blood to most of the body is malformed, is the most dangerous form and the most common cause
of death in infants with CHDs. To achieve early diagnosis and intervention of the disease, the long-term goal is
to understand the molecular and cellular mechanisms of HLHS. Although HLHS is evidently a genetic disease,
little is known about the genetic mechanisms and pathophysiology underlying the disease. One major reason for
such a knowledge gap is the lack of animal models replicating this human disease. Preliminary work from the
lab suggests that frog may represent a valuable animal model for studying HLHS. The loss of transcription factor
Ets1 in frog leads to an HLHS-like phenotype, with thickened ventricular wall and reduced chamber volume.
Genetic deletion of Ets1 in mice, however, leads to ventricular septal defects and double outlet right ventricle,
but not HLHS, suggesting the involvement of additional factors in the pathological development of the disease.
Therefore, the goal of this project is to use the frog model to identify genetic causes for HLHS. To determine
additional genes involved in HLHS and better understand how different structural changes in the heart correlate
to cardiac function, an efficient functional screen is needed. Currently, there is no imaging tool that can continu-
ously observe the entire beating embryonic frog heart in vivo with a high spatiotemporal resolution, making the
direct analysis of cardiac function impossible. To address this challenge, the first aim will be developing a fast-
speed, volumetric light-field microscopy tool that exhibits high specificity and sensitivity yet low photodamage to
enable in vivo examination of heart function in developing embryos. With this platform, the second aim will be
examining heart anatomy as well as heart function in frog embryos when candidate HLHS-related genes are
mutated. Combining advanced imaging technology and quantitative analysis, this study will lead to the efficient
discovery of critical genes involved in heart development and the structure-function relations between genetic
components and pathophysiological phenotypes, laying the foundation to uncover the etiology of HLHS. This
novel conceptual and methodological groundwork will also be valuable in broader basic and translational cardiac
research.
项目概要
先天性心脏病 (CHD) 是最常见的出生缺陷类型,影响约 1% 的人口
世界范围内的关系。在先心病中,有左心发育不全综合征 (HLHS),其中左心室泵血
身体大部分部位的含氧血液是畸形的,是最危险的形式和最常见的原因
患有 CHD 的婴儿死亡的比例。实现疾病的早期诊断和干预,长期目标是
了解 HLHS 的分子和细胞机制。尽管 HLHS 显然是一种遗传病,
人们对这种疾病的遗传机制和病理生理学知之甚少。一个主要原因是
这种知识差距是缺乏复制这种人类疾病的动物模型。前期工作从
实验室表明青蛙可能是研究 HLHS 的有价值的动物模型。转录因子的丢失
青蛙中的 Ets1 会导致类似 HLHS 的表型,即心室壁增厚和心室容积减小。
然而,小鼠中 Ets1 的基因缺失会导致室间隔缺损和右心室双出口,
但 HLHS 则不然,这表明在该疾病的病理发展中还涉及其他因素。
因此,该项目的目标是利用青蛙模型来识别 HLHS 的遗传原因。确定
与 HLHS 相关的其他基因,更好地了解心脏的不同结构变化如何相互关联
对于心脏功能,需要有效的功能筛查。目前,还没有任何成像工具可以连续
以高时空分辨率在体内观察整个跳动的胚胎青蛙心脏,使得
直接分析心脏功能是不可能的。为了应对这一挑战,首要目标是开发一种快速
速度、体积光场显微镜工具,具有高特异性和灵敏度,但光损伤低
能够对发育中胚胎的心脏功能进行体内检查。有了这个平台,第二个目标将是
当候选 HLHS 相关基因存在时,检查青蛙胚胎的心脏解剖结构和心脏功能
变异了。结合先进的成像技术和定量分析,这项研究将带来高效的
发现参与心脏发育的关键基因以及遗传之间的结构与功能关系
的组成和病理生理表型,为揭示 HLHS 的病因奠定基础。这
新颖的概念和方法论基础在更广泛的基础和转化心脏方面也将很有价值
研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu Jia其他文献
Shu Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu Jia', 18)}}的其他基金
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
- 批准号:
10251215 - 财政年份:2018
- 资助金额:
$ 21.56万 - 项目类别:
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
- 批准号:
10001545 - 财政年份:2018
- 资助金额:
$ 21.56万 - 项目类别:
Exploring Single-Molecule Biophotonics for Ultrahigh-Resolution Spatiotemporal-Multiplexed Optical Microscopy
探索用于超高分辨率时空多重光学显微镜的单分子生物光子学
- 批准号:
9381934 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Toward Systems Biophotonics: Imaging Biology across High Dimensions and Scales
迈向系统生物光子学:高维度和尺度的生物学成像
- 批准号:
10668458 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Toward Systems Biophotonics: Imaging Biology across High Dimensions and Scales
迈向系统生物光子学:高维度和尺度的生物学成像
- 批准号:
10406412 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Predictive Markers for Longitudinal TMJ Integrity
纵向颞下颌关节完整性的预测标记
- 批准号:
10648171 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
- 批准号:
10827155 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别: