MICROTUBULE POST-TRANSLATIONAL MODIFICATIONS IN AXON REGENERATION
轴突再生中的微管翻译后修饰
基本信息
- 批准号:8810263
- 负责人:
- 金额:$ 33.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAxonAxonal TransportBackBiological AssayCalciumCell NucleusConfocal MicroscopyCuesCytoskeletonDataDeacetylaseDeacetylationElectron MicroscopyEnvironmentEnzymesEventFutureGoalsGrowthGrowth ConesHDAC5 geneHealthHistone DeacetylaseInjuryJNK-activating protein kinaseLaboratoriesLesionMAPK8 geneMaintenanceMeasuresMediatingMicrotubulesModificationMolecularMorphologyNatural regenerationNervous System PhysiologyNeuraxisNeurobiologyNeuronsNuclear ExportPathway interactionsPeripheralPeripheral Nervous SystemPlayPost-Translational Protein ProcessingProblem SolvingProcessPropertyRecoveryRegenerative responseRoleSignal PathwaySignal TransductionSiteStructureTestingTherapeutic InterventionTimeTubulinVesicleaxon injuryaxon regenerationcentral nervous system injuryextracellularinjuredinsightknock-downmouse modelmutantnerve injuryneuronal cell bodynew growthnovelprogramsregenerativeresearch studyresponseretrograde transportsmall hairpin RNAtyrosyltubulin ligase
项目摘要
DESCRIPTION (provided by applicant): Lack of robust axonal regeneration represents one of the major barriers to recovery of neurological functions following injury to neurons within the central nervous system (CNS). In contrast, neurons in the peripheral nervous system (PNS) have a remarkable ability to regenerate after injury. The extent of axonal regeneration not only depends on the presence or absence of inhibitory cues in the environment, but also on the intrinsic growth capacity of damaged neurons. Indeed, blocking extracellular inhibitory influences alone is not sufficient to allow complete axon regeneration, emphasizing the need for a better understanding of the mechanisms controlling the intrinsic regenerative ability of injured neurons. The mechanisms that govern axon regeneration operate both in the cell body and locally in the axon. The local axonal responses allow injured neurons to signal back to the cell body and to transform their damaged axonal tips into a new growth- cone-like structure, two processes that are essential to initiate regeneration. In pursuing our studies on the response of axons to injury, we recently focused on the microtubule (MT) cytoskeleton. We found that the histone deacetylase HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. HDAC5 accumulates and deacetylates tubulin at the tip of injured PNS, but not CNS axons. HDAC5-mediated tubulin deacetylation is essential for PNS neuron's ability to regenerate, but fails to occur in CNS neurons. In addition to tubulin deacetylation, we observed that PNS axon injury also increases tubulin tyrosination. Tubulin acetylation and tyrosination are known to contribute to the dynamics properties of MTs and to MT-dependent axonal transport. However, the signaling pathways elicited by injury, which regulate MT posttranslational modifications and the precise role these modifications play in axon regeneration remain elusive. Here we propose to uncover the mechanisms controlling MT post-translational modifications in injured axons and to establish their specific roles in injured axons. Specifically, we will determine how a tubulin deacetylation gradient is maintained over time to sustain axon regeneration. We will also determine whether tubulin tyrosination initiates the retrograde transport of injury signals to activate a pro- regenerative program. Our long-term goal is to gain new insights into the molecular events that dictate the regenerative response of PNS neurons, and identify potential targets for future therapeutic interventions in the setting of CNS injury.
描述(由申请人提供):缺乏健壮的轴突再生是中枢神经系统(CNS)内神经元后神经功能恢复的主要障碍之一。相反,外周神经系统(PNS)中的神经元具有显着的受伤后再生能力。轴突再生的程度不仅取决于环境中抑制性线索的存在,还取决于受损神经元的内在生长能力。实际上,仅阻止细胞外抑制性影响不足以允许完全轴突再生,强调需要更好地理解控制受伤神经元内在再生能力的机制。控制轴突再生的机制在细胞体和轴突局部起作用。局部轴突反应使受伤的神经元可以向细胞体发出信号,并将其受损的轴突尖转换为新的生长锥状结构,这是引发再生必不可少的两个过程。 在追求有关轴突对损伤的反应的研究时,我们最近专注于微管(MT)细胞骨架。我们发现组蛋白脱乙酰基酶HDAC5是一种新型损伤调节的微管蛋白脱乙酰基酶控制轴突再生。 HDAC5在受伤的PNS的尖端累积并脱乙酰基小管蛋白,而不是CNS轴突。 HDAC5介导的小管蛋白脱乙酰基化对于PNS神经元的再生能力至关重要,但在中枢神经系统神经元中未能发生。除了微管蛋白脱乙酰化外,我们还观察到PNS轴突损伤还增加了微管蛋白硫化。众所周知,微管蛋白乙酰化和硫化有助于MT的动力学特性和MT依赖性轴突转运。然而,受伤引起的信号传导途径调节MT翻译后修饰以及这些修饰在轴突再生中的确切作用仍然难以捉摸。在这里,我们建议揭示控制MT轴突翻译后修饰的机制,并在受伤的轴突中确定其特定作用。具体而言,我们将确定如何随着时间的推移维持微管蛋白脱乙酰化梯度以维持轴突再生。我们还将确定小管蛋白硫化是否会引发伤害信号的逆行运输以激活促进程序。我们的长期目标是获得对决定PNS神经元再生反应的分子事件的新见解,并在中枢神经系统损伤的情况下确定未来治疗干预措施的潜在靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Cavalli其他文献
Valeria Cavalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Cavalli', 18)}}的其他基金
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
- 批准号:
10752180 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10707415 - 财政年份:2022
- 资助金额:
$ 33.25万 - 项目类别:
Characterization of human DRG at the single cell level via integrated transcriptomics and spatial proteomics
通过整合转录组学和空间蛋白质组学在单细胞水平表征人类 DRG
- 批准号:
10593846 - 财政年份:2022
- 资助金额:
$ 33.25万 - 项目类别:
2022 Cell Biology of the Neuron Gordon Research Conference and Gordon ReSeminar
2022年神经元细胞生物学戈登研究会议和戈登再研讨会
- 批准号:
9992131 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10406343 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10238542 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Multicellular Mechanisms Driving Axon Regeneration
驱动轴突再生的多细胞机制
- 批准号:
10624855 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
9913648 - 财政年份:2019
- 资助金额:
$ 33.25万 - 项目类别:
Functional role of satellite glial cells in axon regeneration
卫星胶质细胞在轴突再生中的功能作用
- 批准号:
10061654 - 财政年份:2019
- 资助金额:
$ 33.25万 - 项目类别:
ELUCIDATING THE ROLE OF NEURONAL MTOR SIGNALING IN SCHWANN CELL DEVELOPMENT
阐明神经元 MTOR 信号转导在施万细胞发育中的作用
- 批准号:
9387143 - 财政年份:2017
- 资助金额:
$ 33.25万 - 项目类别:
相似国自然基金
α-synuclein通过抑制施旺细胞NGF分泌及其逆向轴突运输参与多系统萎缩发病机制的研究
- 批准号:82001343
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
轴突运输相关基因罕见变异对于肌萎缩侧索硬化发病和表型影响的作用及机制研究
- 批准号:82001361
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人单纯疱疹病毒1型-H129株的轴突运输机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
针刺诱导αTAT1/HDAC6调控α-tubulin乙酰化稳态改善AD轴突运输的机制研究
- 批准号:81904311
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
双皮质素通过轴突运输促进缺氧缺血新生小鼠海马神经修复的作用和机制
- 批准号:81971425
- 批准年份:2019
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Development of live-cell probes to investigate tubulin post-translational modifications in neuronal regeneration
开发活细胞探针来研究神经元再生中微管蛋白翻译后修饰
- 批准号:
10648255 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
- 批准号:
10558741 - 财政年份:2020
- 资助金额:
$ 33.25万 - 项目类别:
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
- 批准号:
9887403 - 财政年份:2020
- 资助金额:
$ 33.25万 - 项目类别: