Advanced computational methods in analyzing high-throughput sequencing data
分析高通量测序数据的先进计算方法
基本信息
- 批准号:10559560
- 负责人:
- 金额:$ 44.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdvanced DevelopmentAlgorithmsAttentionBacterial GenomeBiologicalBiomedical ResearchCodeComplexComputational algorithmComputer softwareComputing MethodologiesDataEngineeringFundingFutureGenerationsGenesGenetic VariationGenomeGraphHaplotypesHi-CHigh-Throughput Nucleotide SequencingLabelLengthMainstreamingMapsMedicalMemoryMethodsModernizationNucleotidesParentsPerformancePhasePricePrincipal InvestigatorProteinsProtocols documentationPublicationsRNA SplicingRepetitive SequenceResearchResolutionSequence AlignmentTechniquesTechnologyWorkWritingbaseclinical applicationcomputerized toolsgenetic pedigreegenome annotationhigh throughput analysishuman dataimprovedinsertion/deletion mutationnanoporepower analysisprogramsspellingsuccesstool
项目摘要
PROJECT SUMMARY
High-performance computational algorithms are essential to the analysis of large-scale biological sequence data
and have received broad attention. Developed several years or even more than a decade ago, many mainstream
software packages for sequence alignment, assembly and genome annotation do not take full advantage of
modern accurate long-read data or cannot keep up with the throughput of current technologies. The development
of advanced algorithms is critical to the applications of sequencing technologies in the near future. Based on our
work in the previous funding cycle, this project will address this pressing need with four proposals: (1) developing
an alignment algorithm for accurate long reads and high-quality assemblies for more comprehensive alignment
through highly repetitive regions and long segmental duplications; (2) extending our hifiasm assembler to the
high-quality assembly of more accurate Oxford Nanopore reads available nowadays; (3) combining our hifiasm
and dipasm algorithms for more accurate and more contiguous haplotype-resolved assembly without pedigree
data; (4) developing a protein-to-genome aligner to assist large-scale gene annotation of new species. Upon
completion, the proposed studies will result in high-performance user facing tools for sequence alignment and
assembly that are faster and more accurate than the current generation.
项目概要
高性能计算算法对于大规模生物序列数据的分析至关重要
并受到广泛关注。很多主流都是几年甚至十多年前开发的
用于序列比对、组装和基因组注释的软件包没有充分利用
现代准确的长读取数据或无法跟上当前技术的吞吐量。发展历程
先进算法的发展对于测序技术在不久的将来的应用至关重要。基于我们的
在上一个资助周期的工作中,该项目将通过四项建议来解决这一迫切需求:(1)开发
用于精确长读取和高质量组装的比对算法,以实现更全面的比对
通过高度重复的区域和长片段的重复; (2) 将我们的 hifiasm 汇编器扩展到
如今可提供更准确的 Oxford Nanopore 读数的高质量组装; (3) 结合我们的hifiism
和 dipasm 算法,可实现更准确、更连续的单倍型解析组装,无需谱系
数据; (4)开发蛋白质到基因组比对仪,协助新物种的大规模基因注释。之上
完成后,拟议的研究将产生面向用户的高性能工具,用于序列比对和
装配速度比当前一代更快、更准确。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heng Li其他文献
Heng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heng Li', 18)}}的其他基金
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10777673 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10112282 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10379369 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
9904877 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Advanced computational methods in analyzing high-throughput sequencing data
分析高通量测序数据的先进计算方法
- 批准号:
10367263 - 财政年份:2018
- 资助金额:
$ 44.5万 - 项目类别:
Bioinformatics Technology to Characterize Tumor Infiltrating Immune Repertoires
生物信息学技术表征肿瘤浸润免疫库
- 批准号:
9888343 - 财政年份:2018
- 资助金额:
$ 44.5万 - 项目类别:
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Multiethnic machine learning brain signatures of ADRD
ADRD 的多种族机器学习大脑特征
- 批准号:
10693310 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
High accuracy automated tick classification using computer vision
使用计算机视觉进行高精度自动蜱分类
- 批准号:
10699845 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别: