Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
基本信息
- 批准号:10559575
- 负责人:
- 金额:$ 38.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActomyosinAlginatesAnatomyAnionsAutomobile DrivingBiochemicalBiological ProcessBiomedical EngineeringBullaCancer BiologyCell NucleusCell VolumesCellsCellular biologyCollagenConfined SpacesCuesCytokinesisCytoplasmCytoskeletonDataDevelopmental BiologyDimensionsDiseaseDisease ProgressionDistantEmbryonic DevelopmentEventExtracellular MatrixFiberGelGoalsHealthHumanImaging DeviceIn VitroInvadedIon ChannelLamin Type ALightMechanical StressMechanicsMediatingMicrofluidicsModelingMolecularMyosin Type IINerveNuclearNuclear TranslocationOrganismPathway interactionsPatternPhenotypePhysiologicalProcessPropertyRegulationRoleRuptureScaffolding ProteinSpeedSupporting CellSurfaceSystemTechnologyTestingTissuesTravelVisualizationWorkYeastsanillincell motilityin vivoin vivo Modelinsightknock-downmechanical propertiesmechanotransductionmigrationnoveloptogeneticspolyacrylamidepressureresponsetoolviscoelasticity
项目摘要
Summary- Cells in vivo travel through confining three-dimensional (3D) pores between fibrillar extracellular
matrix (ECM) networks or channel-like tracks bordered by ECM bundles, vessels, myofibers or nerves. The
mechanisms enabling cell locomotion in diverse microenvironments are adaptive in response to the physical and
biochemical cues, such as confinement, stiffness, viscoelastic properties and composition of ECM. Adaptive
systems/modules include cell-ECM interactions, the actomyosin cytoskeleton and cell volume regulation.
Recently, we and others have also identified the key role of the nucleus in confined migration. However,
numerous fundamental and translational questions remain unanswered on the crosstalk between nuclear
mechanosensing, cytoskeleton and cell volume regulation, and their contributions to confined migration in health
and disease. The overarching goal of this project is to employ state-of-the-art bioengineering, materials and
imaging tools as well as in vivo models to provide a novel unified framework for efficient migration in confinement
by deciphering the interplay between nuclear mechanics, cytoskeleton and ion channels. This R01 application
will test the hypothesis that the nucleus senses and responds to physical confinement by exquisitely regulating
the spatial activation of RhoA along the longitudinal cell axis in confined spaces via the synergistic roles of
confinement-induced nuclear stiffening and anillin/Ect2 nuclear exit to the cytoplasm. This hypothesis is
supported by intriguing preliminary data showing that cell entry into confining µ-channels induces nuclear
stiffening which activates RhoA and supports ion channel-dependent nuclear blebbing and rupture. Nuclear
rupture induces the exit of anillin and the RhoGEF Ect2 from the nucleus to the cytoplasm. Anillin accumulates
specifically at the cell poles, where it locally bridges Ect2, RhoA and actomyosin, thereby exacerbating RhoA-
myosin II contractility. In Aim 1, we will decipher the mechanisms of anillin exit to the cytoplasm, and demonstrate
its critical role as a scaffolding protein, which bridges Ect2, RhoA and actomyosin at the cell poles, thereby
regulating the spatial activation of RhoA and bleb-based migration in confinement. We will also elucidate the
novel crosstalk between cell volume regulation and anillin/Ect2/RhoA in nuclear blebbing and rupture in
confinement. Lastly, we will decipher the contributions of nuclear pushing from the cell rear versus nuclear pulling
from the cell front (i.e., nuclear piston model) to migration as a function of the degree of confinement. In Aim 2,
we will extend the applicability of our findings to 3D gels and confining µ-channels of prescribed physiologically
relevant mechanical properties in vitro. We will also visualize the distinct localization patterns of anillin, Ect2 and
key ion channels in natural tissue tracks of different dimensions in vivo, and test how perturbations of these
molecules impact local and distant tissue invasion in vivo. This work will also develop and establish novel
bioengineering tools (e.g., optogenetic probes, µ-fluidic chamber) for better understanding cell motility in health
and disease.
摘要-体内细胞穿过纤维状细胞外之间的三维 (3D) 孔
基质(ECM)网络或以ECM束、血管、肌纤维或神经为边界的通道状轨道。
使细胞在不同微环境中运动的机制能够适应物理和环境
生化线索,例如 ECM 的约束、刚度、粘弹性和成分。
系统/模块包括细胞-ECM 相互作用、肌动球蛋白细胞骨架和细胞体积调节。
最近,我们和其他人还确定了细胞核在受限迁移中的关键作用。
关于核之间的串扰,许多基本和转化问题仍未得到解答。
机械传感、细胞骨架和细胞体积调节及其对健康限制迁移的贡献
该项目的总体目标是采用最先进的生物工程、材料和技术。
成像工具以及体内模型,为限制中的有效迁移提供新颖的统一框架
通过破译核力学、细胞骨架和离子通道之间的相互作用。
将检验这样的假设:细胞核通过精细调节来感知和响应物理限制
通过协同作用,RhoA 在有限空间内沿细胞纵向轴进行空间激活
限制引起的核硬化和 anillin/Ect2 核退出细胞质。
有趣的初步数据表明,细胞进入限制性 µ 通道会诱导核
激活 RhoA 并支持离子通道依赖性核起泡和核破裂的硬化。
破裂诱导 Anillin 退出,并且 RhoGEF Ect2 从细胞核积累到细胞质。
特别是在细胞两极,它局部桥接 Ect2、RhoA 和肌动球蛋白,从而加剧 RhoA-
在目标 1 中,我们将破译 anillin 退出细胞质的机制,并证明。
它作为支架蛋白的关键作用,在细胞两极桥接 Ect2、RhoA 和肌动球蛋白,从而
我们还将阐明限制中 RhoA 的空间激活和基于气泡的迁移。
细胞体积调节与 anillin/Ect2/RhoA 之间在核起泡和破裂中的新串扰
最后,我们将破译细胞后部的核推动与核拉动的贡献。
从细胞前沿(即核活塞模型)到迁移作为限制程度的函数在目标 2 中,
我们将把我们的研究结果的适用性扩展到 3D 凝胶并限制规定生理学的 µ 通道
我们还将可视化 anillin、Ect2 和 的不同定位模式。
自然组织中的关键离子通道在体内跟踪不同维度,并测试这些扰动如何
这项工作也将发展和建立新颖的分子影响体内局部和远处组织侵袭的方法。
生物工程工具(例如光遗传学探针、μ流体室)可更好地了解健康中的细胞运动
和疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Konstantopoulos其他文献
Konstantinos Konstantopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
- 批准号:
10571938 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
- 批准号:
10358051 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10374917 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10338164 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10381200 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10559616 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10582153 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10524192 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
- 批准号:
10622450 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
- 批准号:
10379292 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 38.64万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10374917 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Polymeric Matrices with Defined Cell Adhesion
具有明确细胞粘附力的聚合物基质
- 批准号:
8035602 - 财政年份:2010
- 资助金额:
$ 38.64万 - 项目类别:
Polymeric Matrices with Defined Cell Adhesion
具有明确细胞粘附力的聚合物基质
- 批准号:
8043663 - 财政年份:1998
- 资助金额:
$ 38.64万 - 项目类别:
Polymeric Matrices with Defined Cell Adhesion
具有明确细胞粘附力的聚合物基质
- 批准号:
7751849 - 财政年份:1998
- 资助金额:
$ 38.64万 - 项目类别: