Unexpected complexity in bacterial genomes

细菌基因组的意外复杂性

基本信息

  • 批准号:
    10559673
  • 负责人:
  • 金额:
    $ 42.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

SUMMARY The textbook view of bacterial genomes shows a set of discrete genes, transcribed individually or as operons. Transcription initiates at promoters upstream of these genes/operons, producing mostly protein-coding mRNAs along with a smaller number of stable, functional RNAs (tRNAs, rRNAs, sRNAs). Transcription factors bind close to promoters and regulate transcription from those promoters. Transcription terminates downstream of genes, in 3’ UTRs. This view has been the basis for decades of work on gene expression and gene regulation, with enormous advances in our understanding of these processes. However, work from my group and others has shown that bacterial genomes are far more complex. We will leverage my expertise in genetics, genomics, and molecular biology, to continue productive lines of research on four overlapping topics that relate to the major research focus of my group: the unexpected complexity of bacterial genomes. My lab has been very productive on this topic, with 19 papers since 2016 directly relevant to the four themes described in this proposal. Topic #1. Pervasive transcription. We and others have shown that most bacterial promoters are not in intergenic regions, upstream of genes. Rather, they are located within genes, in sense or antisense orientations, and are involved in “pervasive transcription”, whereby short, non-coding RNAs are transcribed before being rapidly terminated by Rho and degraded. The majority of these RNAs are believed to be non-functional, and suppression of pervasive transcription is required to maintain cell fitness. Topic #2. Non-canonical transcription factor (TF) binding. We have mapped the direct and indirect regulatory targets of hundreds of TFs across a wide range of bacterial species. Most TF binding sites are located within genes, not intergenic regions. Moreover, most TF binding events are not associated with detectable regulation of a nearby gene. Our data also show that in vivo binding profiles are often not well explained by a DNA sequence motif, suggesting a role for other factors in determining the genomic sites of TF binding. Topic #3. Widespread gene regulation by attenuation. We have shown that transcription of many Escherichia coli genes is prematurely terminated by the conserved termination factor Rho, either in the 5’ UTR or ORF, a process commonly referred to as “attenuation”. Attenuation has been described previously, but our data indicate that it happens on a much larger scale than previously appreciated. We are interested in the mechanisms of attenuation involving Rho termination, with a particular focus on the role of upstream ORFs (uORFs) that function as cis-acting regulators, since we have identified large numbers of these ORFs in diverse bacterial species. Topic #4. Processive antitermination. RNA polymerase can be protected from the action of the Rho termination factor in a process known as “processive antitermination”. We will identify new regulatory targets of known antiterminator proteins, we will determine the mechanisms of antitermination, and we will discover new antiterminator proteins.
概括 细菌基因组的教科书观点显示了一组离散的基因,单独转录或作为操纵子转录。 转录起始于这些基因/操纵子上游的启动子,主要产生蛋白质编码 mRNA 与少量稳定的功能性 RNA(tRNA、rRNA、sRNA)紧密结合。 启动子并调节这些启动子的转录终止于基因的下游。 3' UTRs 是数十年来基因表达和基因调控研究的基础。 然而,我的团队和其他人的工作已经使我们对这些过程的理解取得了巨大的进步。 表明细菌基因组要复杂得多,我们将利用我在遗传学、基因组学和生物学方面的专业知识。 分子生物学,继续对与专业相关的四个重叠主题进行富有成效的研究 我小组的研究重点:细菌基因组的意外复杂性我的实验室一直非常复杂。 自 2016 年以来,该主题已发表 19 篇论文,与本提案中描述的四个主题直接相关。 主题#1。我们和其他人已经证明大多数细菌启动子并不存在。 相反,它们位于基因内,有义或反义方向。 并且参与“普遍转录”,因此短的非编码RNA在被转录之前就被转录了 这些 RNA 中的大多数被认为是无功能的,并且被 Rho 迅速终止。 维持细胞健康需要抑制普遍转录。 主题#2。非规范转录因子 (TF) 结合。 大多数 TF 结合位点位于多种细菌物种的数百个 TF 的靶点内。 此外,大多数 TF 结合事件与可检测的调控无关。 我们的数据还表明,DNA 序列通常不能很好地解释体内结合谱。 基序,表明其他因素在确定 TF 结合的基因组位点中的作用。 主题#3。通过减毒进行广泛的基因调控。我们已经证明许多埃希氏菌的转录。 大肠杆菌基因被保守的终止因子 Rho 过早终止,无论是在 5’UTR 或 ORF 中, 之前已经描述过通常称为“衰减”的过程,但我们的数据表明。 它发生的规模比以前想象的要大得多,我们对其中的机制很感兴趣。 涉及 Rho 终止的衰减,特别关注发挥作用的上游 ORF (uORF) 的作用 作为顺式作用调节因子,因为我们已经在不同的细菌物种中鉴定出大量这些 ORF。 主题#4。RNA 聚合酶可以免受 Rho 的作用。 我们将确定新的监管目标,称为“进行性反终止”。 已知的抗终止子蛋白,我们将确定抗终止子的机制,并且我们将发现新的 抗终止子蛋白。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Thomas Wade其他文献

Joseph Thomas Wade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Thomas Wade', 18)}}的其他基金

Unexpected complexity in bacterial genomes
细菌基因组的意外复杂性
  • 批准号:
    10334351
  • 财政年份:
    2022
  • 资助金额:
    $ 42.72万
  • 项目类别:
STnc520, a virulence-associated regulatory RNA in Salmonella Typhimurium
STnc520,鼠伤寒沙门氏菌毒力相关的调节 RNA
  • 批准号:
    10307637
  • 财政年份:
    2020
  • 资助金额:
    $ 42.72万
  • 项目类别:
High-throughput application of CRISPR technology to identify gene function in Salmonella
高通量应用CRISPR技术鉴定沙门氏菌基因功能
  • 批准号:
    9172073
  • 财政年份:
    2016
  • 资助金额:
    $ 42.72万
  • 项目类别:
HTS assay development for bacterial transcription factors
细菌转录因子的 HTS 检测开发
  • 批准号:
    8436800
  • 财政年份:
    2013
  • 资助金额:
    $ 42.72万
  • 项目类别:
HTS assay development for bacterial transcription factors
细菌转录因子的 HTS 检测开发
  • 批准号:
    8739660
  • 财政年份:
    2013
  • 资助金额:
    $ 42.72万
  • 项目类别:
Characterization of a novel ETEC virulence regulator
新型 ETEC 毒力调节剂的表征
  • 批准号:
    8232038
  • 财政年份:
    2011
  • 资助金额:
    $ 42.72万
  • 项目类别:
Characterization of a novel ETEC virulence regulator
新型 ETEC 毒力调节剂的表征
  • 批准号:
    8091726
  • 财政年份:
    2011
  • 资助金额:
    $ 42.72万
  • 项目类别:
Pervasive transcription in bacterial genomes
细菌基因组中的普遍转录
  • 批准号:
    7980955
  • 财政年份:
    2010
  • 资助金额:
    $ 42.72万
  • 项目类别:

相似海外基金

A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
  • 批准号:
    10730832
  • 财政年份:
    2023
  • 资助金额:
    $ 42.72万
  • 项目类别:
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    $ 42.72万
  • 项目类别:
Glia Exclusive Gene Therapy
胶质细胞独家基因疗法
  • 批准号:
    10739502
  • 财政年份:
    2023
  • 资助金额:
    $ 42.72万
  • 项目类别:
Muscle-Specific CRISPR/Cas9 Exon Skipping for Duchenne Muscular Dystrophy Therapeutics
肌肉特异性 CRISPR/Cas9 外显子跳跃用于杜氏肌营养不良疗法
  • 批准号:
    10679199
  • 财政年份:
    2023
  • 资助金额:
    $ 42.72万
  • 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
  • 批准号:
    10814079
  • 财政年份:
    2023
  • 资助金额:
    $ 42.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了