Predicting brain tumor progression via multiparametric image analysis and modelin
通过多参数图像分析和建模预测脑肿瘤进展
基本信息
- 批准号:8915752
- 负责人:
- 金额:$ 54.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAnatomyAtlasesBiological PreservationBiophysicsBiopsyBrainBrain NeoplasmsCell DensityCellsCessation of lifeCharacteristicsClinicalClinical TreatmentCommunitiesComplexComputer AnalysisComputer SimulationDataData SetDatabasesDiseaseEdemaEquilibriumExcisionFailureFiberFutureGeneticGenotypeGlioblastomaGliomaGoalsGrowthHealthHeterogeneityImageImage AnalysisInfiltrationLabelLearningLiteratureMachine LearningMalignant - descriptorMalignant NeoplasmsMetabolismMethodsModelingMolecularMolecular AnalysisMolecular ProfilingNormal tissue morphologyPathway interactionsPatientsPatternPattern RecognitionPhenotypePhysiologyProcessPropertyProtocols documentationRadiation therapyRadiosurgeryReadingRecurrenceScanningSignal TransductionSolutionsSourceTechnologyTissuesTrainingVascularizationWorkbiophysical modelbrain tissuecancer imagingchemotherapyclinical practicecohortdesignfollow-upimage registrationimaging informaticsimprovedinnovationinsightmathematical modelneoplastic cellneuroimagingneuropsychiatryoutcome forecastpatient populationpopulation basedpredictive modelingradiosensitizingsocialstatisticstargeted treatmenttrendtumortumor growthtumor progressionwhite matter
项目摘要
DESCRIPTION (provided by applicant): High-grade brain gliomas, the most common of which is glioblastoma multiforme (GBM), have terrible prognosis and a median patient survival of about 12 months. Although combinations of surgical removal, radiotherapy and chemotherapy are used in the clinical practice, a fundamental and persistent limitation in treating these aggressive tumors is that they tend to infiltrate into normal tissue well beyond margins visible via imaging. Since assessing the spatial extent of tumor infiltration is nearly impossible using current radiologic reading practices, clinical treatment tends to be restricted to parts that are deemed to be clearly malignant, frequently only the enhancing tumor. This failure to aggressively treat the infiltrating tumor accelerates tumor recurrence, and eventually patient death. This proposal aims to develop computational modeling and image analysis methods that will improve our ability to estimate GBM infiltration, as well as to predict tissue that is likelyto present fastest tumor recurrence, thereby eventually opening the way for more aggressive, yet targeted, treatment, such as targeted aggressive surgical removal and/or radiosurgery. To achieve our goal, we will integrate information from several sources: 1) advanced multi-parametric imaging, which captures many aspects of tumor anatomy and physiology~ 2) computational modeling of tumor growth and infiltration~ 3) machine learning methods which, after appropriate training, can learn subtle and potentially complex imaging phenotypes of infiltrating tumors~ 4) statistical atlases, which capture population-based trends that can offer additional insights into tumor growth, such as relationship of infiltration to vasculature and to white matter fiber pathways~ 5) data from one of the largest patient populations having advanced imaging, genotyping, follow-up till tumor recurrence, and histological analysis.
描述(由申请人提供):高级脑胶质瘤,其中最常见的是多形胶质母细胞瘤(GBM),具有可怕的预后,中位患者的存活率约为12个月。尽管在临床实践中使用了手术切除,放疗和化学疗法的组合,但治疗这些攻击性肿瘤的基本和持久限制是,它们倾向于通过成像可见的缘远远超出距离的正常组织。由于使用当前的放射性阅读实践评估肿瘤浸润的空间范围几乎是不可能的,因此临床治疗往往仅限于被认为显然是恶性的部分,通常只有增强的肿瘤。这种未能积极治疗浸润性肿瘤会加速肿瘤复发,并最终患者死亡。该提案旨在开发计算建模和图像分析方法,以提高我们估计GBM浸润的能力,并预测可能呈现最快肿瘤复发的组织,从而最终为更具侵略性但有针对性的治疗(例如有针对性的攻击性手术移除和/或放射性手术)开辟道路。 To achieve our goal, we will integrate information from several sources: 1) advanced multi-parametric imaging, which captures many aspects of tumor anatomy and physiology~ 2) computational modeling of tumor growth and infiltration~ 3) machine learning methods which, after appropriate training, can learn subtle and potentially complex imaging phenotypes of infiltrating tumors~ 4) statistical atlases, which capture population-based trends that can offer additional insights into tumor生长,例如浸润与脉管系统的关系和与白质纤维途径的关系〜5)来自具有高级成像,基因分型,随访直至肿瘤复发的最大患者人群之一的数据和组织学分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 54.12万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 54.12万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 54.12万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 54.12万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 54.12万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 54.12万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 54.12万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining individual differences in large scale brain networks in individuals with OCD and their relations to heterogeneity of obsessive compulsive symptoms.
检查强迫症患者大规模大脑网络的个体差异及其与强迫症状异质性的关系。
- 批准号:
10624934 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别:
Comparative, single-cell analysis of COVID-19 and other respiratory diseases
COVID-19 和其他呼吸道疾病的比较单细胞分析
- 批准号:
10361031 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别:
Multiscale, Multimodal Analysis of Skin and Spatial Cell Organization
皮肤和空间细胞组织的多尺度、多模式分析
- 批准号:
10708913 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别:
Relating functional MRI to neuronal activity: accounting for effects of microarchitecture
将功能 MRI 与神经元活动联系起来:解释微结构的影响
- 批准号:
10660270 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别:
Multiscale, Multimodal Analysis of Skin and Spatial Cell Organization
皮肤和空间细胞组织的多尺度、多模式分析
- 批准号:
10530827 - 财政年份:2022
- 资助金额:
$ 54.12万 - 项目类别: