Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
基本信息
- 批准号:10091381
- 负责人:
- 金额:$ 37.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAffectAgreementAlabamaAlgorithmsAllyAssessment toolAutomationCaringCharacteristicsClinical ResearchCognitionCognitiveComputational algorithmConfusionConsensusDataData AnalysesData SetDeliriumDescriptorDetectionDevelopmentDiagnostic testsDiscipline of NursingDiseaseElderlyElectronic Health RecordEpidemiologyFoundationsGrowthHealth systemHospitalsImpaired cognitionIndividualInpatientsInstitutesInstitutionalizationLaboratoriesLinkLogisticsLong-Term Care for ElderlyMachine LearningMeasurableMedicalMethodsModelingMonitorNatural Language ProcessingNursesNursing StaffOperative Surgical ProceduresPatientsPatternPattern RecognitionPersonsPreventionPropertyProviderROC CurveReference StandardsResearchResourcesRiskRisk FactorsSample SizeSamplingSigns and SymptomsTestingTextTimeTrainingUniversitiesValidationacute careadverse outcomebasecare costsconfusion assessment methoddata miningepidemiology studyfunctional declinefunctional disabilityhealth care settingshigh dimensionalityhuman old age (65+)improvedinstrumentinterestlarge scale datamodel developmentmortality risknovelnovel strategiespatient stratificationphrasesprediction algorithmprogramsrisk predictionrisk prediction modelscreeningvalidation studiesvirtualward
项目摘要
Abstract. Delirium, or acute confusional state, affects 30-40% of hospitalized older adults, with the added cost
of care estimated to be up to $7 billion. Although originally conceptualized as a transient disorder, delirium is now
recognized to have significant consequences, including increased risk of death, functional decline, and long-term
cognitive impairment. As up to 75% cases are not recognized by providers, there is an urgent need for additional
methods to identify delirium for clinical and research purposes, and to stratify patients based on delirium risk. In
this proposal, we present a novel approach to the identification of delirium based on large-scale data mining (i.e.,
pattern recognition) algorithms using machine learning and natural language processing applied to electronic
health record (EHR) data, which will automate chart-based determination of delirium status and risk prediction.
We will combine these algorithms with data collected through our recently implemented Virtual Acute Care for
Elders (ACE) quality improvement project, which institutes delirium screening once per shift by nursing staff for
all individuals over age 65 admitted to the University of Alabama at Birmingham (UAB) Hospital. This unprece-
dented volume of data will allow us to achieve the necessary sample sizes for effective training and validation of
our data mining algorithms. Data mining algorithms that discover patterns of associations in data, rather than
testing predetermined hypotheses, are well suited to application in large-scale algorithms for identification of
delirium. Using our Virtual ACE and hospital EHR data, we will be able to evaluate more than 10,000 individual
features (e.g., text words and phrases, laboratory and other diagnostic tests, concurrent medical conditions) as-
sociated with delirium, which will be classified as risk factors for delirium, as signs, symptoms, and descriptors
of delirium itself, and as complications and consequences of delirium, based on expert consensus. We will then
use these features to develop rules for identification of delirium in the EHR, as well as risk prediction models that
can be integrated into the EHR to provide individualized assessments of delirium risk. This study will lay the
foundation for methods of automated delirium identification and risk prediction in healthcare settings that are
unable to implement the screening by providers done in our Virtual ACE, as well as for large-scale epidemiological
investigations of delirium using EHR data, expanding the current armamentarium for studying this common and
debilitating disorder.
抽象的。谵妄或急性精神错乱状态影响着 30-40% 的住院老年人,并增加了费用
护理费用估计高达 70 亿美元。虽然谵妄最初被概念化为一种短暂性障碍,但现在已被定义为
公认会产生重大后果,包括死亡风险增加、功能衰退和长期
认知障碍。由于高达 75% 的病例未被提供商认可,因此迫切需要额外的
用于临床和研究目的识别谵妄的方法,以及根据谵妄风险对患者进行分层的方法。在
在这项提案中,我们提出了一种基于大规模数据挖掘(即,
模式识别)使用机器学习和自然语言处理的算法应用于电子
健康记录(EHR)数据,它将自动基于图表确定谵妄状态和风险预测。
我们将把这些算法与通过我们最近实施的虚拟急性护理收集的数据相结合
老年人 (ACE) 质量改进项目,该项目由护理人员每班次进行一次谵妄筛查
所有 65 岁以上的人均入住阿拉巴马大学伯明翰分校 (UAB) 医院。这前所未有——
减少的数据量将使我们能够达到有效训练和验证所需的样本量
我们的数据挖掘算法。数据挖掘算法发现数据中的关联模式,而不是
测试预先确定的假设,非常适合用于识别的大规模算法中的应用
谵妄。使用我们的虚拟 ACE 和医院 EHR 数据,我们将能够评估 10,000 多名个人
特征(例如,文本单词和短语、实验室和其他诊断测试、并发医疗状况)作为-
与谵妄相关,将被归类为谵妄的危险因素,如体征、症状和描述符
谵妄本身,以及谵妄的并发症和后果,基于专家共识。我们随后将
使用这些功能来开发 EHR 中谵妄的识别规则以及风险预测模型
可以集成到 EHR 中,以提供谵妄风险的个性化评估。这项研究将奠定
为医疗保健环境中自动谵妄识别和风险预测方法奠定了基础
无法实施由提供商在我们的 Virtual ACE 中进行的筛查以及大规模的流行病学筛查
使用 EHR 数据对谵妄进行调查,扩大了当前研究这种常见和
使人衰弱的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD E KENNEDY其他文献
RICHARD E KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD E KENNEDY', 18)}}的其他基金
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10341053 - 财政年份:2019
- 资助金额:
$ 37.69万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records (Supplement)
电子健康记录中谵妄的自动化识别和风险预测(补充)
- 批准号:
10410694 - 财政年份:2019
- 资助金额:
$ 37.69万 - 项目类别:
In Silico Screening of Medications for Slowing Alzheimer's Disease Progression.
减缓阿尔茨海默病进展药物的计算机筛选。
- 批准号:
9884696 - 财政年份:2017
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
6935669 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7121993 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7272023 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别: