Instructive Signals for Motor Learning
运动学习的指导信号
基本信息
- 批准号:8964760
- 负责人:
- 金额:$ 47.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsArtificial IntelligenceBehaviorBrainBrain PartCerebellar vermis structureCerebellumDiseaseExhibitsFeedbackFiberFrequenciesGoalsHealthIn VitroIndividualInjuryLearningLong-Term DepressionMovementMusNeuronsPatientsPatternPerformancePhysiologyPlasticsPropertyPurkinje CellsRecruitment ActivityRegulationResearchSignal TransductionStimulusStrokeStructureSynapsesSynaptic plasticityTestingTimeTrainingWild Type MouseWorkbasebehavioral studyimprovedin vivomemory encodingmotor learningnervous system disorderneural circuitoculomotoroptogeneticspublic health relevancerelating to nervous systemresearch studytherapy designvestibulo-ocular reflexvisual stimulus
项目摘要
DESCRIPTION (provided by applicant): Synapses between neurons are plastic - able to become stronger or weaker. When we learn, new memories are encoded in modified synapses across our brains. The aim of this project is to understand the rules that determine which synapses will change during learning, and how that change results in an adapted behavior. In particular, we will analyze how an error in a movement acts as a trigger for synaptic change that, in turn, improves the accuracy of subsequent movements. When an incorrect movement is made, the brain gets feedback about the error, and uses this information to guide the induction of plasticity at appropriate synapses. The part of the brain responsible for motor learning, the cerebellum, gets this feedback about errors through a synaptic input known as a climbing fiber. When an error in movement occurs, activity in the climbing fiber is an "error signal" that sends the message to the cerebellum that the circuit controlling the movement needs to be adjusted by adjusting the strength of some of the synapses. It is usually the synapses that were recently active that are modified. We will analyze which patterns of activity in the climbing fibers or othe cerebellar neurons are necessary and sufficient to cause plasticity to be induced. The rules governing the induction of plasticity at the synapses in a circuit define the algorithm that circui uses to learn. A better understanding those rules can guide strategies to more effectively tap the learning potential of neural circuits in both healthy individuals, those with neurological disorder, and in patients relearning how to control their movements after stroke This proposal addresses not just unanswered questions in the field of motor learning, but is relevant for a more general understanding of how the synaptic plasticity mechanisms in a neural circuit may be finely tuned for the specific computational demands of the behavior it controls.
描述(由申请人提供):神经元之间的突触是可塑的——当我们学习时,新的记忆会被编码在我们大脑中经过修改的突触中。该项目的目的是了解决定哪些突触会变得更强或更弱的规则。特别是,我们将分析运动中的错误如何触发突触变化,从而提高后续运动的准确性。当做出不正确的运动时,大脑会获得有关错误的反馈,并使用此信息来指导适当突触的可塑性诱导。大脑中负责运动学习的部分小脑通过已知的突触输入获得有关错误的反馈。当运动发生错误时,攀爬纤维的活动是一个“错误信号”,它向小脑发送信息:需要通过调整某些突触的强度来调整控制运动的电路。通常是最近活跃的突触被修改,我们将分析攀爬纤维或其他小脑神经元中的哪些活动模式对于诱导可塑性是必要的和充分的,控制突触可塑性诱导的规则。电路定义了电路用于学习的算法,更好地理解这些规则可以指导策略更有效地挖掘健康个体、神经系统疾病患者以及中风后重新学习如何控制运动的患者的神经回路的学习潜力。这该提案不仅解决了运动学习领域中尚未解答的问题,而且与更全面地理解神经回路中的突触可塑性机制如何针对其控制的行为的特定计算需求进行微调相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L Raymond其他文献
Jennifer L Raymond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L Raymond', 18)}}的其他基金
Activity-Dependent Tagging of Cerebellar Neurons for Studying Signal Processing and Learning
用于研究信号处理和学习的小脑神经元活动依赖性标记
- 批准号:
10319181 - 财政年份:2021
- 资助金额:
$ 47.33万 - 项目类别:
A technique for measuring eye movements in small and/or freely moving animals
一种测量小型和/或自由移动动物眼球运动的技术
- 批准号:
9360618 - 财政年份:2016
- 资助金额:
$ 47.33万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 47.33万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 47.33万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 47.33万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 47.33万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 47.33万 - 项目类别: