Machine learning-based development of serologic test for acute Lyme disease diagnosis
基于机器学习的急性莱姆病诊断血清学检测的开发
基本信息
- 批准号:10259497
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-04 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAmino AcidsAntibodiesAntibody RepertoireAntigensAreaAutoimmuneAutoimmune DiseasesBindingBorrelia burgdorferiCenters for Disease Control and Prevention (U.S.)ChemicalsClassificationClinicalComputer ModelsCustomDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDifferential DiagnosisDiseaseEarly DiagnosisEarly InterventionEnsureEpitopesEvaluationExanthemaHealthHumanImmunoassayImmunologyIncidenceLaboratoriesLengthLibrariesLyme DiseaseMachine LearningMethodsModelingMolecularPatient-Focused OutcomesPatientsPeptidesPerformancePilot ProjectsPrevalenceProtein EngineeringProteinsProteomeResearchRiskSamplingSerologySerology testSerumServicesSiteSpecificitySurface AntigensSymptomsSynthetic AntigensTest ResultTestingTherapeutic InterventionTick-Borne DiseasesUnited StatesWorkantigen diagnosticbasebiomarker panelclassification algorithmclinical diagnosticscohortcomputerized toolscostcross reactivitydensitydesigndiagnosis standarddiagnostic assaydisease diagnosiseffective therapyerythema migransfallsimprovedin silicomachine learning methodmembermolecular diagnosticsnovelnovel diagnosticspathogenpatient populationresponseseasonal influenzasynthetic peptidetechnological innovationtick bitetick-borne
项目摘要
Project Summary/Abstract
Lyme Disease is a tickborne illness with markedly increasing prevalence in the United States and an urgent
need for improved diagnostics in its early stages, when treatment is most efficient. While classic clinical
presentation of the early illness is the presence of erythema migrans (EM), or “bullseye rash”, surrounding the
tick bite site, 20-30% of patients do not present with EM. Further complicating diagnosis is a proportion of
patients who present with EM, but are seronegative on the current standard two-tiered test algorithm (STTTA).
The proposed research addresses the need for improved serological tests to diagnose early Lyme Disease in
these patients, while the disease is the most responsive to treatment. A proof-of-concept antigen panel
capable of distinguishing STTTA-positive acute Lyme samples from endemic controls was identified using a
novel antigen discovery approach. This approach relies on representing an entire binding space of a donor’s
circulating antibody repertoire using machine learning models based on the antibody binding profile to a
diverse, random library of 126,050 peptides with an average length of 9 amino acids, which is a sparse
representation of all possible amino acid combinations. Resulting models are then used to identify pathogen
epitopes with high predictive power that are combined into a panel with diagnostic efficacy. Here, the unmet
need of diagnosing early Lyme disease in STTTA-seronegative patients is addressed by the addition of
antigens predicted as specific to this patient population. Diagnostic efficacy of the supplemented proof-of-
concept antigen panel, that was identified in a previous proof-of-principle study, will be tested using an
expanded cohort of STTTA seronegative donors and endemic controls. Specificity of the panel for Lyme
disease will be confirmed using a panel of look-a-like illnesses including autoimmune diseases and tickborne
diseases. This work is expected to yield data demonstrating the feasibility of a novel immunoassay for the
diagnosis of early stage Lyme Disease patients currently missed by present tests. Additionally, it will serve as a
demonstration of the antigen discovery approach as a means to identify diagnostic antigens for difficult
pathogens.
项目概要/摘要
莱姆病是一种蜱传疾病,在美国的患病率显着增加,是一个紧迫的问题
需要在早期阶段改进诊断,而此时的治疗是最有效的。
早期疾病的表现是周围出现游走性红斑 (EM) 或“牛眼皮疹”
在蜱叮咬部位,20-30% 的患者不会出现 EM,进一步使诊断变得复杂化。
患有 EM 但根据当前标准两级测试算法 (STTTA) 呈血清阴性的患者。
拟议的研究解决了改进血清学测试以诊断早期莱姆病的需要
这些患者,而该疾病对治疗最有反应。
能够区分 STTTA 阳性急性莱姆病样本与地方性对照的
新的抗原发现方法依赖于代表供体的整个结合空间。
使用基于抗体结合谱的机器学习模型来分析循环抗体库
包含 126,050 个肽的多样化、随机库,平均长度为 9 个氨基酸,这是一个稀疏的库
然后使用所有可能的氨基酸组合的表示来识别病原体。
具有高预测能力的表位被组合成具有诊断功效的表位。
通过添加以下内容解决了 STTTA 血清阴性患者诊断早期莱姆病的需要
预测对该患者群体具有特异性的抗原的补充证明的诊断功效。
在之前的原理验证研究中确定的概念抗原组将使用
扩大了 STTTA 血清阴性供体和流行病对照人群的莱姆病特异性。
将使用一组相似的疾病(包括自身免疫性疾病和蜱传疾病)来确认疾病
这项工作预计将产生数据,证明新型免疫分析方法的可行性。
此外,目前的测试还无法对早期莱姆病患者进行诊断。
演示抗原发现方法作为识别困难诊断抗原的一种手段
病原体。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly heterogenous humoral immune response in Lyme disease patients revealed by broad machine learning-assisted antibody binding profiling with random peptide arrays.
通过使用随机肽阵列进行广泛的机器学习辅助抗体结合分析,揭示了莱姆病患者的高度异质性体液免疫反应。
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Kelbauskas, L;Legutki, J B;Woodbury, N W
- 通讯作者:Woodbury, N W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laimonas Kelbauskas其他文献
Laimonas Kelbauskas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laimonas Kelbauskas', 18)}}的其他基金
Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals
开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测
- 批准号:
10760885 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: