Mitochondrial Metabolism in Primary Hyperoxaluria
原发性高草酸尿症的线粒体代谢
基本信息
- 批准号:8632089
- 负责人:
- 金额:$ 33.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-05-01 至 2017-12-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlanine-glyoxylate aminotransferaseAlcoholsAldehyde-LyasesAnionsAntioxidantsBackBioenergeticsCalcium OxalateCellsChinese Hamster Ovary CellCulture MediaCultured CellsCytoplasmCytosolDegradation PathwayDiabetes MellitusDiseaseEnd stage renal failureEnzymesExcretory functionExperimental Animal ModelFatty LiverFunctional disorderGenerationsGlycolatesGlyoxylatesHeart DiseasesHepatocyteHereditary DiseaseHydrogen PeroxideHydroxyprolineImpairmentIndividualInfantInfusion proceduresIonsKidneyKidney CalculiKidney FailureKidney TransplantationKnockout MiceKnowledgeLabelLeadLifeLiverMeasuresMetabolicMetabolic DiseasesMetabolismMitochondriaModelingMusNephrocalcinosisOxalatesOxidasesParkinson DiseasePathway interactionsPatientsPharmaceutical PreparationsPhenotypePlasmaPlayPrimary HyperoxaluriaProcessProductionPropertyProximal Kidney TubulesRare DiseasesReactive Oxygen SpeciesRenal functionResearchRodent ModelRoleSamplingSourceStressTechniquesTestingTherapeuticTissuesTracerTransplantationUrineWild Type Mousealpha ketoglutaratedesignenzyme activityglyoxylateglyoxylate reductaseinsightmitochondrial dysfunctionmouse modelnervous system disordernovelnovel strategiesoxidationperoxisomepublic health relevancepyridoxineresearch studyresponseurinary
项目摘要
DESCRIPTION (provided by applicant): Primary Hyperoxaluria (PH) is a rare, genetic disorder that is characterized by an increased urinary oxalate excretion, the formation of calcium oxalate kidney stones, and in severe cases renal failure. In the most extreme cases, some develop nephrocalcinosis and renal failure as infants with a poor survival outlook. Our research suggests that hydroxyproline metabolism makes a major contribution to the increased oxalate synthesis that occurs in PH. This metabolism occurs in the mitochondrion and is aberrant in a recently identified form of the disease, Type 3, where the activity of the enzyme, 4-hydroxy-2-oxoglutarate aldolase (HOGA), a component of the degradation pathway, is deficient. A deficiency in another mitochondrial enzyme, glyoxylate reductase, is associated with Type 2 disease. In Type 1 disease, glycolate-glyoxylate cycling occurs in the liver when glycolate produced in mitochondria from hydroxyproline metabolism is oxidized in peroxisomes to glyoxylate and reduced back to glycolate in the cytoplasm because of the absence of AGT. We hypothesize that the hydrogen peroxide produced with this cycling contributes to mitochondrial dysfunction due to an increased generation of reactive oxygen species. We further hypothesize that the altered metabolism in these types of PH may result in an altered concentration of oxalate, glyoxylate and glycolate in mitochondria and the cytosol. Changes in ion levels, particularly oxalate and calcium, could further modify mitochondrial properties. In this proposal, we will use genetically modified mice to determine how the changes in enzyme composition associated with PH alter mitochondrial properties in hepatocytes and renal proximal tubule cells (RPTC). The first specific aim will determine the phenotype of Hoga1 knock-out mice and examine how the substrate, HOG, is split when HOGA is absent. We hypothesize that an alternative aldolase is able to split HOG when its concentration increases sufficiently. The second specific aim will examine mitochondrial properties and metabolic changes that occur in intact hepatocytes and RTPC from normal and genetically modified mice using an XF-analyzer. Mitochondrial quality will also be assessed in liver and kidney tissue of the mouse models and in liver tissue from PH patients receiving a transplant. Whether a mitochondrial specific drug such as MitoQ can offset any adverse changes will be investigated. The third specific aim will identify changes that occur in mitochondria isolated from these mice when they metabolize hydroxyproline and glyoxylate. These experiments will illuminate the metabolism associated with the increased oxalate synthesis that occurs in PH, highlight the role played by mitochondria in the disease process, and illustrate important differences between liver and kidney mitochondria. This research should lead to novel approaches to decrease excessive oxalate synthesis and modify mitochondrial dysfunction in PH.
描述(由申请人提供):原发性高草酸尿症(PH)是一种罕见的遗传性疾病,其特征是尿草酸排泄增加、草酸钙肾结石形成,严重时会出现肾功能衰竭。在最极端的情况下,一些婴儿在婴儿时期就出现肾钙质沉着症和肾功能衰竭,生存前景不佳。我们的研究表明,羟脯氨酸代谢对 PH 中草酸盐合成的增加做出了重大贡献。这种代谢发生在线粒体中,并且在最近发现的 3 型疾病中是异常的,其中降解途径的一个组成部分 4-羟基-2-酮戊二酸醛缩酶 (HOGA) 的活性缺陷。另一种线粒体酶乙醛酸还原酶的缺乏与 2 型疾病有关。在 1 型疾病中,当线粒体中羟脯氨酸代谢产生的乙醇酸在过氧化物酶体中氧化为乙醛酸,并由于缺乏 AGT 而在细胞质中还原回乙醇酸时,肝脏中会发生乙醇酸-乙醛酸循环。我们假设这种循环产生的过氧化氢由于活性氧的产生增加而导致线粒体功能障碍。我们进一步假设这些类型的 PH 代谢的改变可能导致线粒体和细胞质中草酸盐、乙醛酸盐和乙醇酸盐浓度的改变。离子水平的变化,特别是草酸盐和钙的变化,可以进一步改变线粒体的特性。在本提案中,我们将使用转基因小鼠来确定与 PH 相关的酶组成的变化如何改变肝细胞和肾近端小管细胞 (RPTC) 中的线粒体特性。第一个具体目标是确定 Hoga1 敲除小鼠的表型,并检查当 HOGA 不存在时底物 HOG 是如何分裂的。我们假设另一种醛缩酶在其浓度充分增加时能够分解 HOG。第二个具体目标是使用 XF 分析仪检查正常小鼠和转基因小鼠的完整肝细胞和 RTPC 中发生的线粒体特性和代谢变化。还将评估小鼠模型的肝脏和肾脏组织以及接受移植的 PH 患者的肝脏组织中的线粒体质量。将研究线粒体特异性药物(例如 MitoQ)是否可以抵消任何不利变化。第三个具体目标是确定从这些小鼠体内分离出的线粒体在代谢羟脯氨酸和乙醛酸时发生的变化。这些实验将阐明与 PH 中草酸合成增加相关的代谢,强调线粒体在疾病过程中所发挥的作用,并说明肝脏和肾脏线粒体之间的重要差异。这项研究应该会带来新的方法来减少过量的草酸盐合成并改变PH中的线粒体功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROSS P HOLMES其他文献
ROSS P HOLMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROSS P HOLMES', 18)}}的其他基金
Influence of Obesity on Endogenous Oxalate Synthesis
肥胖对内源性草酸合成的影响
- 批准号:
10167931 - 财政年份:2018
- 资助金额:
$ 33.19万 - 项目类别:
Influence of Obesity on Endogenous Oxalate Synthesis
肥胖对内源性草酸合成的影响
- 批准号:
10265575 - 财政年份:2018
- 资助金额:
$ 33.19万 - 项目类别:
Mitochondrial Metabolism in Primary Hyperoxaluria
原发性高草酸尿症的线粒体代谢
- 批准号:
8926129 - 财政年份:2014
- 资助金额:
$ 33.19万 - 项目类别:
INFLUENCE OF GLYCINE BLOOD CONCENTRATION ON ITS METABOLISM TO OXALATE
甘氨酸血液浓度对其草酸盐代谢的影响
- 批准号:
8167055 - 财政年份:2010
- 资助金额:
$ 33.19万 - 项目类别:
Ninth International Primary Hyperoxaluria Workshop
第九届国际原发性高草酸尿症研讨会
- 批准号:
8007053 - 财政年份:2010
- 资助金额:
$ 33.19万 - 项目类别:
相似海外基金
Dysregulated Oxalate Metabolism in Cardiometabolic Diseases
心脏代谢疾病中草酸代谢失调
- 批准号:
10717214 - 财政年份:2023
- 资助金额:
$ 33.19万 - 项目类别:
Biochemical profiling to identify cardiometabolic responsiveness to an endurance exercise intervention
通过生化分析来确定心脏代谢对耐力运动干预的反应
- 批准号:
10547825 - 财政年份:2021
- 资助金额:
$ 33.19万 - 项目类别:
Biochemical profiling to identify cardiometabolic responsiveness to an endurance exercise intervention
通过生化分析来确定心脏代谢对耐力运动干预的反应
- 批准号:
10096791 - 财政年份:2021
- 资助金额:
$ 33.19万 - 项目类别:
Biochemical profiling to identify cardiometabolic responsiveness to an endurance exercise intervention
通过生化分析来确定心脏代谢对耐力运动干预的反应
- 批准号:
10363615 - 财政年份:2021
- 资助金额:
$ 33.19万 - 项目类别:
DMGV and the AGXT2 pathway in chronic exercise-induced cardiometabolic adaptations.
DMGV 和 AGXT2 通路在慢性运动引起的心脏代谢适应中的作用。
- 批准号:
10214687 - 财政年份:2020
- 资助金额:
$ 33.19万 - 项目类别: