4D Robust Optimization in Intensity-Modulated Proton Therapy
调强质子治疗中的 4D 鲁棒优化
基本信息
- 批准号:8906504
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-13 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAnatomyArchivesAreaAttentionAwardBiometryBody Weight decreasedCaliberCancer CenterCancer HospitalCancer PatientCharacteristicsClinicalClinical ResearchCodeComputersDevelopmentDevelopment PlansDistalDoctor of PhilosophyDoseDropsEnsureEnvironmentEquationFacultyFour-dimensionalFutureGoalsGrantHealth SciencesHigh Performance ComputingIndividualInstitutionIntensity modulated proton therapyIntensity-Modulated RadiotherapyInternationalInvestigationJointsKnowledgeLaboratoriesLateralLeadLearningMalignant NeoplasmsMalignant neoplasm of abdomenMalignant neoplasm of liverMalignant neoplasm of lungMalignant neoplasm of thoraxMapsMeasurableMedical ImagingMedical Radiation PhysicsMemoryMentorsMethodologyMethodsModalityModelingMotionNormal tissue morphologyOrganPatientsPhasePhotonsPhysicsProbabilityProton RadiationProtonsQuantum MechanicsRadiationRadiation PhysicsRadiation therapyRadiobiologyResearchResearch PersonnelResidual stateResourcesRespirationRiceRiskSafetyScanningSchemeSideSolidSourceSpottingsTestingTexasTherapeuticTherapeutic StudiesTimeTissuesTrainingTraining ProgramsTranslational ResearchUncertaintyUnited StatesUniversitiesUniversity of Texas M D Anderson Cancer CenterValidationVariantWorkX-Ray Computed Tomographybasecancer radiation therapycancer therapycareercareer developmentcomputer designdesigndistributed memorydosimetryexperienceimage registrationimprovedinnovationmathematical algorithmnovelpatient populationperturbation theoryprofessorproton beamproton therapyrespiratoryskillssoftware developmentsymposiumtreatment centertreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant): The applicant's immediate career goal is to make the transition to a high-caliber independent researcher and to establish a small laboratory in an intense and supportive research environment. In the long term, the applicant hopes to develop a solid academic career focusing on translational research in the area of medical radiation physics that impacts various aspects of the state-of-the-art radiotherapy modalities. The candidate, who obtained his PhD from Princeton University in 2007 and later worked at the Los Alamos National Laboratory as a postdoctoral researcher, has extensive prior experience in computational physics, mathematics and algorithms, and software development, especially code development in massive parallel high-performance computing (HPC). The candidate also has solid analytical and mathematical skills to solve complicated physics problems, along with an interdisciplinary background. In July 2010, the candidate joined the faculty of the Department of Radiation Physics of The University of Texas MD Anderson Cancer Center as an assistant professor (research track). MD Anderson is a research-driven, comprehensive cancer hospital and is the leading cancer center in the United States. The Department of Radiation Physics provides the clinical, research, and educational resources necessary to support physics and dosimetry research related to cancer therapy. The department's Proton Therapy Center-Houston (PTC-H) began patient treatments in May 2006. PTC-H is one of few proton treatment centers in the world to have the capability to deliver intensity- and energy-modulated treatments with scanned proton beams, which is the major focus of the proposed research. During the award period, the candidate will focus on the development and validation of novel advanced radiation therapy methodologies. With the support of this K25 grant, the applicant plans to 1) obtain in-depth knowledge and hands-on experience in the clinical and research aspects of radiation therapy; 2) obtain in- depth knowledge of anatomy; 3) obtain in-depth knowledge of medical imaging; 4) obtain moderate knowledge of biostatistics; and 5) obtain moderate knowledge of radiobiology. To achieve these objectives, the applicant will work with a group of experienced mentors and collaborating researchers on joint projects focusing on the radiotherapy of cancers, take academic courses at Rice University and The University of Texas-Health Science Center at Houston, undergo clinical training in radiation therapy, and attend seminars and conferences. Four-dimensional (4D) robust optimization of intensity-modulated proton therapy (IMPT) has been chosen as the research topic for this K25 training program to help the applicant gain the experience necessary to become an independent investigator. The use of IMPT to treat lung cancers presents numerous challenges that need to be addressed through research to maximize the therapeutic benefits of this promising modality. What the candidate learns during this research will be widely applicable to many areas of research in this field. In principle, IMPT
has the greatest potential to provide highly conformal tumor target coverage, while sparing adjacent healthy organs. However, characteristics of protons (e.g., the abrupt drop-off of dose beyond the range and scattering) make IMPT highly vulnerable to uncertainties. Sources of uncertainty include tumor shrinkage, weight loss, variation in patient setup, respiratory motion, uncertainties in CT numbers and stopping power ratios, and approximations in proton dose calculation algorithms. The current practice for managing uncertainties in IMPT is similar to that for intensity-modulated radiation therapy (IMRT), i.e., assigning a safety margin around the clinical target volume to produce a planning target volume. The resulting dose distributions are, in general, not robust in the face of uncertainties, i.e., what is delivered to the patient may be significantly different from what is seen on the computer-designed treatment plan and may lead to unforeseen clinical consequences. Therefore, investigations leading to the development of suitable 4D robust optimization methods to improve the optimality and robustness of IMPT plans to uncertainties, including regular and irregular motion, are vital. Our hypothesis is that 4D robust optimization can render IMPT plans less sensitive to uncertainties and achieve better sparing of normal tissues (both by at least a factor of two) than conventional plans optimized on the basis of margins. We propose to test our hypothesis in the following specific aims: (1) to quantify anatomy motion and its uncertainty; (2) to develop and implement 4D IMPT optimization; (3) to enhance the IMPT plan robustness; and (4) to validate IMPT 4D robust optimization. Compared to previous 4D robust optimization approaches in IMRT, the research proposed by the applicant has several innovative aspects, including a "customized", as-small-as-necessary margin optimized spontaneously to handle uncertainties and regular motion, the use of perturbation theory, widely used in quantum mechanics to solve the Schr¿dinger equation, to handle irregular motion, and memory-distributed parallelization to solve the challenging high-computer-memory requirement problem. We expect that our pioneering 4D robust optimization research in IMPT will fill gaps in our knowledge about appropriate ways to minimize the influence of uncertainties in IMPT and lead to significant benefits for cancer patients, especially those with thoracic and abdominal cancers. This project doesn't involve activities outside of the United States or partnerships with international collaborators.
描述(由申请人证明):申请人的职业目标是向高素质独立性的脚趾过渡到在强烈和支持性的研究环境中,申请人希望发展扎实专注于影响最先进的其他疗法方式的医学辐射物理学领域,候选人于2007年从普林斯顿大学获得博士学位研究人员在计算物理学,数学和算法和软件开发方面具有丰富的先前经验,在大规模平行的高性能计算(HPC)中,尤其是代码开发(HPC)。背景。为了支持与癌症治疗有关的物理学和剂量学研究候选人将重点放在新的晚期放射治疗方法上,并在该T的支持下,申请人计划1)获得了深入的知识和动手体验)获得对医学成像的深入了解;休斯敦的Iversity和Texas-Health Scienter(4D)对强度模块化质子疗法(IMPT)的强大优化被选为该主题,以帮助申请人获得必要的经验使用IMPT来信任肺癌提出了许多挑战,这些挑战通过在研究期间最大化这种有希望的方式的治疗效果。
最大的是提供高度的保形肿瘤目标覆盖范围,同时保留健康的器官。设置,CT数字的不确定性和质子剂量计算算法中的功率比率。 ,面对不确定性,即交付给患者的东西可能与计算机设计的顶部到不可预见的临床奉献的情况有显着差异。我们的假设是定期的,我们的假设是,强大的优化可以使敏感的计划较低,而不是根据优化利率优化的传统计划来实现MMAL ES的更好的保留。我们在以下特定目标中的假设:(1)量化解剖学的运动,并且是不可能的;严重性创新的方面自定义”,“依靠的边缘”优化自发性来处理不确定性和常规运动,使用扰动理论,在量子力学中广泛用于求解Schr¿ Dinger方程,处理不规则的运动,并将记忆分布的并行化与具有挑战性的高计算机记忆EM。癌症患者在美国以外的活动或与国际合作者的合作伙伴关系。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploratory study of the association of volumetric modulated arc therapy (VMAT) plan robustness with local failure in head and neck cancer.
- DOI:10.1002/acm2.12099
- 发表时间:2017-07
- 期刊:
- 影响因子:2.1
- 作者:Liu W;Patel SH;Harrington DP;Hu Y;Ding X;Shen J;Halyard MY;Schild SE;Wong WW;Ezzell GE;Bues M
- 通讯作者:Bues M
Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.
强度调制质子治疗剂量分布的“最坏情况剂量”和“最小最大”稳健优化的线性和非线性编程方法的比较。
- DOI:10.1002/acm2.12033
- 发表时间:2017
- 期刊:
- 影响因子:2.1
- 作者:Zaghian,Maryam;Cao,Wenhua;Liu,Wei;Kardar,Laleh;Randeniya,Sharmalee;Mohan,Radhe;Lim,Gino
- 通讯作者:Lim,Gino
A novel and individualized robust optimization method using normalized dose interval volume constraints (NDIVC) for intensity-modulated proton radiotherapy.
一种新颖的个性化鲁棒优化方法,使用归一化剂量间隔体积约束(NDIVC)进行调强质子放射治疗。
- DOI:10.1002/mp.13276
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Shan,Jie;Sio,TerenceT;Liu,Chenbin;Schild,StevenE;Bues,Martin;Liu,Wei
- 通讯作者:Liu,Wei
Technical Note: Multiple energy extraction techniques for synchrotron-based proton delivery systems may exacerbate motion interplay effects in lung cancer treatments.
- DOI:10.1002/mp.15056
- 发表时间:2021-09
- 期刊:
- 影响因子:3.8
- 作者:Younkin JE;Morales DH;Shen J;Ding X;Stoker JB;Yu NY;Sio TT;Daniels TB;Bues M;Fatyga M;Schild SE;Liu W
- 通讯作者:Liu W
Mixed integer programming with dose-volume constraints in intensity-modulated proton therapy.
调强质子治疗中具有剂量体积限制的混合整数规划。
- DOI:10.1002/acm2.12130
- 发表时间:2017
- 期刊:
- 影响因子:2.1
- 作者:Zhang,Pengfei;Fan,Neng;Shan,Jie;Schild,StevenE;Bues,Martin;Liu,Wei
- 通讯作者:Liu,Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Liu其他文献
Porous TiC–TiB2–NiAl composites and effect of NiAl contents on pore structure and microstructure
多孔TiC—TiB2—NiAl复合材料及NiAl含量对孔结构和显微结构的影响
- DOI:
10.1179/1743290115y.0000000007 - 发表时间:
2015-06 - 期刊:
- 影响因子:1.4
- 作者:
Hongzhi Cui;Xiaojie Song;Wei Liu;Nan Hou - 通讯作者:
Nan Hou
Wei Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Liu', 18)}}的其他基金
New Strategies for Copper-Catalyzed Cross-Coupling of Alkyl Electrophiles
铜催化烷基亲电试剂交叉偶联的新策略
- 批准号:
10650863 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
- 批准号:
10374319 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
- 批准号:
9976459 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
- 批准号:
10468265 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
- 批准号:
9761465 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
4D Robust Optimization in Intensity-Modulated Proton Therapy
调强质子治疗中的 4D 鲁棒优化
- 批准号:
8725494 - 财政年份:2012
- 资助金额:
$ 9.99万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别: