Antagonistic interaction of polarity complex proteins in cortical development
皮质发育中极性复合蛋白的拮抗相互作用
基本信息
- 批准号:10132407
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAdherens JunctionApicalArchitectureBindingCell CycleCell Cycle ProgressionCell PolarityCell divisionCellsComplexCortical MalformationDefectDevelopmentDiseaseEpithelialEquilibriumGenerationsGenesGenetic ModelsGoalsHippocampus (Brain)Intellectual functioning disabilityIntercellular JunctionsLeadLinkMediatingMediator of activation proteinMicrocephalyMolecularMutant Strains MiceMyosin ATPaseNeonatalNeurodevelopmental DisorderNeuroepithelialNeurofibromin 2Neurologic SymptomsNeuronal DifferentiationNeuronsOutputPARD6A genePathogenesisPathway interactionsPharmacologyProblem SolvingProductionRegulationRegulatory PathwayResearchSideSignal TransductionStructureTestingTight JunctionsTimeTranscription Coactivatorinsightmigrationmutantnerve stem cellneuroepitheliumneurogenesisnovelperiventricular heterotopiapreventprogenitorprotein complexrestorationstemstem cells
项目摘要
The overall goal of this proposal is to elucidate the mechanisms underlying the developmental defects leading
to cortical malformation by characterizing the fundamental antagonistic interactions between evolutionarily
conserved polarity complex proteins. Disruption of neuroepithelial structure causes abnormalities in neuronal
outputs and cortical malformation that lead to a spectrum of neurodevelopmental disorders, including
periventricular heterotopia (PH), microcephaly and ventriculomegaly. Asymmetrically distributed polarity
protein complexes are critical for establishing and maintaining polarized cellular architecture and for
determining unequal cell fate.
Two complexes (Crb/Pals1/Patj and Mupp1; Par3/Par6/aPKC), termed apical
polarity complex proteins, are localized at the apical side and one basal polarity complex (Lgl/DLG/Scb) is
located basolaterally. Despite its critical importance for cortical epithelial structure and progenitor cell division,
it is unclear whether a well-balanced interaction between them is required for cortical structure and
neurogenesis, and the cellular and molecular machinery that mediates their functional interaction is also poorly
understood. To identify their essential functional interactions and the underlying molecular mechanisms, we
have generated a cortical-specific Llgl1 mutant characterized by massive PH and a cortical-specific Crb2
mutant with ventriculomegaly. Remarkably, Crb1/2 loss drastically reduces heterotopia in the Llg1 mutant. It
has previously been shown that Llgl1 binds to myosin and regulates its activity, and that apical polarity
complex proteins aPKC and Crb2 can inhibit myosin activity. Importantly, because cellular tension and junction
defects are associated with the activation of mitogenic signals such as Yap/Taz transcription coactivator,
downstream effectors of the Hippo pathway, this antagonism may also be linked to abnormal proliferation that
produces the enlarged heterotopic cortex found in Llgl1 CKO. These observations lead us to hypothesize that
the antagonistic interaction between basal and apical polarity complexes is required to
establish/localize actomyosin at the apical junction and prevent activation of an abnormal Yap/Taz-
dependent mitogenic signal. To test this hypothesis, in Aim1 we will define the antagonistic relationship
between apical and basal complexes in cortical progenitor proliferation and junctional integrity by analyzing
mutant mice. In Aim2 we will delineate the mechanism(s) by which polarity complex proteins regulate junctional
integrity by investigating the antagonistic regulation of actomyosin. Lastly, in Aim3 we will determine whether
Yap-Taz regulate mitogenic signaling after polarity disruption. Our study will increase understanding of polarity
complex protein interactions in cortical progenitor cell division, which will provide new insights into the
pathogenesis of cortical malformation and ultimately a basis for novel treatments.
该提案的总体目标是阐明导致发育缺陷的潜在机制
通过表征进化之间的基本拮抗相互作用来治疗皮质畸形
保守极性复合蛋白。神经上皮结构的破坏导致神经元异常
输出和皮质畸形导致一系列神经发育障碍,包括
脑室周围异位(PH)、小头畸形和脑室扩大。极性分布不对称
蛋白质复合物对于建立和维持极化细胞结构以及
决定不平等的细胞命运。
两个复合体(Crb/Pals1/Patj 和 Mupp1;Par3/Par6/aPKC),称为顶端
极性复合体蛋白,位于顶端侧,并且一种基础极性复合体(Lgl/DLG/Scb)是
位于基底外侧。尽管它对于皮质上皮结构和祖细胞分裂至关重要,
目前还不清楚皮质结构和皮质结构是否需要它们之间良好平衡的相互作用。
神经发生以及介导其功能相互作用的细胞和分子机制也很差
明白了。为了确定它们的基本功能相互作用和潜在的分子机制,我们
产生了一种皮质特异性 Llgl1 突变体,其特征是大量 PH 和皮质特异性 Crb2
伴有脑室扩大的突变体。值得注意的是,Crb1/2 的缺失大大减少了 Llg1 突变体中的异位。它
先前已证明 Llgl1 与肌球蛋白结合并调节其活性,并且顶端极性
复合蛋白aPKC和Crb2可以抑制肌球蛋白活性。重要的是,因为细胞张力和连接
缺陷与有丝分裂信号的激活有关,例如 Yap/Taz 转录共激活因子,
Hippo 通路的下游效应子,这种拮抗作用也可能与异常增殖有关,
产生 Llgl1 CKO 中发现的扩大的异位皮层。这些观察结果使我们推测
需要基础极性复合物和顶端极性复合物之间的拮抗相互作用
在顶端连接处建立/定位肌动球蛋白并防止异常 Yap/Taz 的激活
依赖性有丝分裂信号。为了检验这个假设,在 Aim1 中我们将定义对抗关系
通过分析顶部和基底复合物在皮质祖细胞增殖和连接完整性中的关系
突变小鼠。在 Aim2 中,我们将描述极性复合蛋白调节连接的机制
通过研究肌动球蛋白的拮抗调节来完整性。最后,在 Aim3 中我们将确定是否
Yap-Taz 在极性破坏后调节有丝分裂信号。我们的研究将增加对极性的理解
皮质祖细胞分裂中复杂的蛋白质相互作用,这将为了解
皮质畸形的发病机制,并最终为新疗法奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seonhee Kim其他文献
Seonhee Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seonhee Kim', 18)}}的其他基金
Antagonistic interaction of polarity complex proteins in cortical development
皮质发育中极性复合蛋白的拮抗相互作用
- 批准号:
10386814 - 财政年份:2019
- 资助金额:
$ 34.67万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8319415 - 财政年份:2010
- 资助金额:
$ 34.67万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8550834 - 财政年份:2010
- 资助金额:
$ 34.67万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
7986312 - 财政年份:2010
- 资助金额:
$ 34.67万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8516826 - 财政年份:2010
- 资助金额:
$ 34.67万 - 项目类别:
Regulation Of Cortical Neurogenesis By Apical Complex Proteins
顶端复合蛋白对皮质神经发生的调节
- 批准号:
8152199 - 财政年份:2010
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating mechanisms regulating cytoskeletal dynamics and alignment during epithelial tissue folding
研究上皮组织折叠过程中细胞骨架动力学和排列的调节机制
- 批准号:
10598503 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
- 批准号:
10482413 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
- 批准号:
10277473 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Investigating mechanisms regulating cytoskeletal dynamics and alignment during epithelial tissue folding
研究上皮组织折叠过程中细胞骨架动力学和排列的调节机制
- 批准号:
10396453 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Investigating mechanisms regulating cytoskeletal dynamics and alignment during epithelial tissue folding
研究上皮组织折叠过程中细胞骨架动力学和排列的调节机制
- 批准号:
10229158 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别: