NIH Director's Pioneer Award
NIH 院长先锋奖
基本信息
- 批准号:7892246
- 负责人:
- 金额:$ 1.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-10 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAcousticsAddressAdultAfrican AmericanAgeAmericanAnimal BehaviorAnimalsAnteriorAreaAtrophicAuditoryAwardBacillus (bacterium)Bacillus subtilisBasal GangliaBehaviorBehavioralBioinformaticsBiologicalBiological AssayBiologyBiomedical ResearchBirdsBrainBrain InjuriesBrain MappingBrain StemBrain regionCandidate Disease GeneCell NucleusCellsCentenarianCerebrumChemistryChickensChiropteraChromosome StructuresCiliary Neurotrophic FactorCitiesCivilizationClinical ResearchCollectionColumbidaeCommunicationCommunication ResearchComplementary DNAComplexComputational BiologyCorpus striatum structureCorticospinal TractsDNA SequenceDNA Sequence RearrangementDancingDataDatabasesDependencyDevelopmentDiseaseDoctor of PhilosophyDorsalEcologyEducationEducational CurriculumElephantsEmbryoEngineeringEvolutionFaceFacultyFailureFamily PsittacidaeFellowshipFigs - dietaryFortuneFosteringFoundationsFreedomFrequenciesFundingFunding MechanismsGene ExpressionGene Expression ProfileGene Expression RegulationGene TransferGenesGeneticGenetic StructuresGenomicsGlutamate ReceptorGoalsGrantGreen Fluorescent ProteinsHeadHomologous GeneHumanHusbandImageImmediate-Early GenesInfectionInjection of therapeutic agentInstitutesInternationalInternetIntranetJapanese PopulationJordanKnowledgeLanguageLanguage DisordersLaryngeal muscle structureLeadLearningLeftLengthLentivirus VectorLesionLibrariesLifeLinkLiteratureLocationMacacaMacaca mulattaMammalsMapsMathematicsMessenger RNAMethodsMidbrain structureMinorMinorityModelingModificationMolecularMolecular BiologyMolecular NeurobiologyMotorMotor NeuronsMotor PathwaysMovementMuscleMusicMutationNational Research Service AwardsNatureNeural PathwaysNeuritesNeurobiologyNeuronsNeurosciencesNeurotrophin 3New YorkNomenclatureNorth CarolinaOperative Surgical ProceduresOrganOutcomePan GenusPathway interactionsPatternPeripheral NervesPersonsPlasmidsPositioning AttributePrimatesProcessProductionPromoter RegionsProsencephalonProteomicsQuailRattusRecombinant adeno-associated virus (rAAV)ResearchResearch PersonnelResearch SupportResourcesRiskRodentScholarshipSchoolsScienceScientistScreening procedureSemanticsSensorySignal TransductionSleepSocial EnvironmentSocietiesSongbirdsSpeechSpinal Cord LesionsSpinal cord injuryStagingStructureSubfamily lentivirinaeSynapsesSyringesSystemTelencephalonTestingTimeTracerTraineeshipTransduction GeneTraumaTroglodytinaeUnited States National Institutes of HealthUniversitiesViralViral VectorVoiceWomanWorkadenovirus mediated deliveryawakebasebird songbrain pathwaybrain researchcDNA Librarycareercell typecognitive neurosciencecollegecomparativecomplex biological systemscomputer based statistical methodscomputerized toolsdesignessaysfeedingfrontiergene correctiongene functiongene synthesishigh riskhigh schoolhindbrainhypoglossal nucleusin vivoinhibitor/antagonistinsightinterestlarge scale productionmenmotor learningnervous system disorderneurotrophic factornonhuman primatenovelnucleus ambiguusperforming artpositional cloningpre-doctoralpreventprofessorprogramspromoterpsychologicrRNA GenesrRNA Operonrelating to nervous systemrepairedresearch studysimulationsocial communicationsoundsymposiumsyntaxtooltranscription factorvocal learningvocalizationwillingnesszebra finch
项目摘要
Scientific problem to be addressed, and why it is important
The fundamental scientific problem we propose to address is to determine the basic neural and
molecular requirements for vocal learning, the behavioral substrate for spoken language. Language is one of the
essential behaviors that make us human. With it, we are able to communicate complex concepts, pass on
knowledge culturally, and advance human civilization. Without it ¿ due to brain damage, trauma, or
developmental diseases - we live a life of impoverished social communication and life dependency on others.
Studying this fundamental problem requires that we compare the vocal behavior and associated brain pathways
of the few rare groups that have vocal learning - four groups of distantly related mammals (humans, cetaceans,
elephants, and bats) and three groups of distantly related birds (parrots, hummingbirds, and songbirds) ¿ with
the vast majority of species that do not have it - non-human primates, rodents, suboscine songbirds, pigeons,
chickens, etc.1,2. Remarkably, although vocal learners are distantly related to each other, of those whose brains
that have been studied (humans, parrots, hummingbirds, and songbirds), evidence suggests that they share a
similar vocal pathway forebrain organization: a premotor or anterior vocal pathway (AVP) necessary for vocal
learning, including syntax learning, and a motor or posterior vocal pathway (PVP) necessary for production of
learned vocalizations1. These forebrain pathways are not found in vocal non-learners. Yet, vocal non-learners
appear to possess similar brain pathways for learning and production of non-vocal motor behaviors. Given these
findings, we have proposed that the fundamental difference between vocal learners and non-learners is a genetic
difference or several genetic differences that control the connection of forebrain motor learning pathways onto
brainstem motor neurons that normally control the production of innate vocalizations1. In this essay, I outline
the following proposal for testing this novel idea:
1. Discover molecular differences in the motor learning pathways between vocal learners and non-learners.
2. Manipulate their network connectivity by developing novel gene manipulation tools.
3. Use these tools to modify vocal nuclei connectivity and thus vocal behavior of a vocal non-learner,
potentially allowing other species to modify and imitate sounds and allowing correction of damaged
vocal learning brain pathways in vocal learners.
Inducing such connectivity and behavioral changes in vocal non-learners would have profound impact
towards understanding molecular mechanisms of vocal learning and evolution of language. Repairing the
pathway in vocal learners, when damaged, would have profound impact for correcting neurological disorders of
speech.
要解决的科学问题及其重要性
我们建议解决的基本科学问题是确定基本的神经和
声音学习的分子要求,口语的行为基础之一。
使我们成为人类的基本行为有了它,我们就能够交流复杂的概念,传递信息。
文化知识,没有它就推进人类文明。由于脑损伤、外伤或
发育性疾病——我们的生活缺乏社交沟通,生活依赖他人。
研究这个基本问题需要我们比较声音行为和相关的大脑通路
少数具有发声学习能力的稀有群体中有四类关系较远的哺乳动物(人类、鲸类、
大象和蝙蝠)和三类关系较远的鸟类(鹦鹉、蜂鸟和鸣禽)¿和
绝大多数物种没有它——非人类灵长类动物、啮齿动物、亚声鸣禽、鸽子、
值得注意的是,尽管声音学习者彼此之间的关系较远,但它们的大脑却是相似的。
已被研究过的动物(人类、鹦鹉、蜂鸟和鸣禽),有证据表明它们有共同的特征
类似的发声通路前脑组织:发声所必需的前运动或前发声通路(AVP)
学习,包括语法学习,以及产生声音所必需的运动或后发声通路(PVP)
习得的发声1。然而,在发声非学习者中却没有发现这些前脑通路。
鉴于这些,似乎具有相似的学习和产生非声音运动行为的大脑通路。
研究结果表明,声乐学习者和非学习者之间的根本区别在于遗传
控制前脑运动学习通路连接的差异或几个遗传差异
在本文中,我概述了通常控制先天发声产生的脑干运动神经元。
以下建议用于测试这个新颖的想法:
1. 发现声乐学习者和非学习者之间运动学习途径的分子差异。
2. 通过开发新型基因操纵工具来操纵网络连接。
3. 使用这些工具来修改声带核连接,从而改变声乐非学习者的声乐行为,
可能允许其他物种修改和模仿声音并允许纠正受损的声音
声乐学习者的声乐学习大脑通路。
在非学习者中诱导这种连接和行为变化将会产生深远的影响
了解声音学习和语言进化的分子机制。
声乐学习者的通路一旦受损,将对纠正声乐学习者的神经系统疾病产生深远的影响。
演讲。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Whole-genome analyses resolve early branches in the tree of life of modern birds.
全基因组分析解析了现代鸟类生命之树的早期分支。
- DOI:
- 发表时间:2014-12-12
- 期刊:
- 影响因子:0
- 作者:Jarvis, Erich D;Mirarab, Siavash;Aberer, Andre J;Li, Bo;Houde, Peter;Li, Cai;Ho, Simon Y W;Faircloth, Brant C;Nabholz, Benoit;Howard, Jason T;Suh, Alexander;Weber, Claudia C;da Fonseca, Rute R;Li, Jianwen;Zhang, Fang;Li, Hui;Zhou, Long;Na
- 通讯作者:Na
Avian genomes. A flock of genomes. Introduction.
鸟类基因组。
- DOI:10.1126/science.346.6215.1308
- 发表时间:2014-12-12
- 期刊:
- 影响因子:56.9
- 作者:Guojie Zhang;E. Jarvis;M. Gilbert
- 通讯作者:M. Gilbert
Comparative genomic data of the Avian Phylogenomics Project.
鸟类系统基因组学项目的比较基因组数据。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:9.2
- 作者:Zhang, Guojie;Li, Bo;Li, Cai;Gilbert, M Thomas P;Jarvis, Erich D;Wang, Jun;Avian Genome Consortium
- 通讯作者:Avian Genome Consortium
Microproteomics: quantitative proteomic profiling of small numbers of laser-captured cells.
微蛋白质组学:少量激光捕获细胞的定量蛋白质组学分析。
- DOI:10.1101/pdb.prot5573
- 发表时间:2011-02-01
- 期刊:
- 影响因子:0
- 作者:Petra L. Roulhac;James M. Ward;J. Thompson;E. Soderblom;Michael Silva;M. Arthur;Moseley Iii;E. Jarvis
- 通讯作者:E. Jarvis
Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds.
小鼠、鸟类和人类:小鼠超声波鸣叫系统具有一些与人类和学习鸣叫的鸟类相似的特征。
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Arriaga, Gustavo;Zhou, Eric P;Jarvis, Erich D
- 通讯作者:Jarvis, Erich D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erich D Jarvis其他文献
Erich D Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erich D Jarvis', 18)}}的其他基金
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10685974 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10241317 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
9789421 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10002032 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10472693 - 财政年份:2019
- 资助金额:
$ 1.93万 - 项目类别:
Molecular Mechanisms of Basal Ganglia Regeneration in Songbirds
鸣禽基底神经节再生的分子机制
- 批准号:
7473240 - 财政年份:2006
- 资助金额:
$ 1.93万 - 项目类别:
Auditory Protein Regulation in Normal & Abnormal States
正常情况下的听觉蛋白质调节
- 批准号:
7148247 - 财政年份:2006
- 资助金额:
$ 1.93万 - 项目类别:
Auditory Protein Regulation in Normal & Abnormal States
正常情况下的听觉蛋白质调节
- 批准号:
7254135 - 财政年份:2006
- 资助金额:
$ 1.93万 - 项目类别:
Molecular Mechanisms of Basal Ganglia Regeneration in Songbirds
鸣禽基底神经节再生的分子机制
- 批准号:
7125791 - 财政年份:2006
- 资助金额:
$ 1.93万 - 项目类别:
相似国自然基金
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 1.93万 - 项目类别:
MAPS: Mobile Assessment for the Prediction of Suicide
MAPS:自杀预测的移动评估
- 批准号:
10228034 - 财政年份:2018
- 资助金额:
$ 1.93万 - 项目类别:
Middle-ear reflex testing using wideband acoustic immittance
使用宽带声导抗进行中耳反射测试
- 批准号:
10260596 - 财政年份:2018
- 资助金额:
$ 1.93万 - 项目类别:
MAPS: Mobile Assessment for the Prediction of Suicide
MAPS:自杀预测的移动评估
- 批准号:
9982129 - 财政年份:2018
- 资助金额:
$ 1.93万 - 项目类别:
Optimizing Ultrasound Enhanced Delivery of Therapeutics
优化超声增强治疗的输送
- 批准号:
10217039 - 财政年份:2016
- 资助金额:
$ 1.93万 - 项目类别: