Dedicated breast PET and MRI for characterization of breast cancer and its response to therapy
专用乳腺 PET 和 MRI,用于表征乳腺癌及其对治疗的反应
基本信息
- 批准号:10092115
- 负责人:
- 金额:$ 58.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAftercareAlgorithmsBlood VesselsBreastBreast DiseasesBreast Magnetic Resonance ImagingCancer BurdenCancer CenterCharacteristicsClinicalClinical ManagementClinical Trials DesignCompanionsComputer softwareDataDevelopmentDiseaseDoseEarly treatmentEnrollmentEvaluationGenomicsGoalsImageImage AnalysisIn complete remissionIndustrializationInterventionInvestigationLeadLesionLogistic RegressionsMagnetic Resonance ImagingMalignant NeoplasmsMammographyMeasurementMetabolicMetastatic breast cancerMolecularMonitorMorphologyNeoadjuvant TherapyNonmetastaticOutcomeOutputPathologicPatientsPerformancePhase II Clinical TrialsPositioning AttributePositron-Emission TomographyPrediction of Response to TherapyProspective StudiesResearch PersonnelResidual CancersResolutionRoleScanningSelection for TreatmentsSignal TransductionSoftware ToolsStandardizationSystemTechnologyTestingTextureTimeTracerTranslatingTranslationsTumor BiologyTumor VolumeWorkattenuationbasebiological heterogeneitybiomarker performancecancer biomarkerscancer subtypeschemotherapycontrast enhancedcostcost effectivecytotoxicityeffective interventioneffective therapyexperienceimage processingimage registrationimaging biomarkerimprovedin vivo imaging systemindustry partnerinterestmalignant breast neoplasmnovelnovel therapeuticsperformance testspredicting responsepredictive modelingpredictive testprognostic valueradiologistradiomicsradiotracerresearch clinical testingresponseserial imagingsoftware developmenttooltreatment responsetumortumor metabolismuptakeuser-friendly
项目摘要
PROJECT SUMMARY/ABSTRACT
The objective of this academic-industrial partnership (AIP) project is to demonstrate the utility of dedicated
breast positron emission tomography (dbPET) for characterizing primary breast cancers and their response to
neoadjuvant chemotherapy (NAC). While dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
depicts changes in tumor morphology and vascularity in response to NAC, dbPET provides complementary
information about tumor metabolism that can powerfully predict treatment response earlier in the course of
therapy. We focus this project on MAMMI dbPET by OncoVision because it provides the crucial combination
of high spatial resolution and sensitivity that can enable accurate intratumoral mapping of metabolic changes in
small lesions with only half the radiotracer dose of whole-body PET. Importantly, this new system scales PET
technology to be both economically and clinically feasible in the early (pre-metastatic) breast cancer setting. As
the imaging lead (PI: Nola Hylton) of the I-SPY 2 TRIAL, a clinical trial designed to identify novel therapeutics
for breast cancer, we are in a unique position to integrate and test the performance of FDG-dbPET as an early
marker for treatment response. As academic-industrial partners, UCSF and OncoVision will work together to
develop a user-friendly and cost-effective dbPET technology that can be easily adopted into the clinical
workflow of most breast cancer centers. In Specific Aim 1, we will develop software capabilities to standardize
dbPET image registration and quantification to accurately quantify longitudinal changes with treatment. In
Specific Aim 2, we will acquire pre- and post-treatment FDG-dbPET images of a subset of I-SPY 2 patients
and clinically evaluate whether tumor metabolic metrics (i.e., optimized standardized uptake values, SUV) from
dbPET can act as early predictors of pathologic complete response — in comparison to, and in combination
with, the functional tumor volume (FTV) metric from DCE-MRI. We will test the biomarker performance of
dbPET SUV and combined SUV+FTV using logistic regression predictive models. We will also explore the
association of dbPET and DCE-MRI radiomic features with breast cancer biomarkers in order to identify
imaging features with prognostic value. In addition, our prospective study’s dbPET data will be used to
evaluate the software capabilities developed in Specific Aim 1. We expect the successful completion of this
AIP project to enable the use of MAMMI dbPET in routine breast cancer management and to produce a set of
imaging biomarkers relevant to tumor biology and its change in response to treatment.
项目概要/摘要
该学术-工业合作伙伴关系 (AIP) 项目的目标是展示专用技术的实用性
乳腺正电子发射断层扫描 (dbPET) 用于表征原发性乳腺癌及其对乳腺癌的反应
新辅助化疗(NAC)同时进行动态对比增强磁共振成像(DCE-MRI)。
描述了 NAC 引起的肿瘤形态和血管分布的变化,dbPET 提供了补充
有关肿瘤代谢的信息可以在治疗过程的早期有力地预测治疗反应
我们将该项目的重点放在 OncoVision 的 MAMMI dbPET 上,因为它提供了关键的组合。
具有高空间分辨率和灵敏度,可以准确绘制肿瘤内代谢变化图
仅需全身 PET 一半的放射性示踪剂剂量即可检测小病灶 重要的是,这种新系统可扩展 PET 的规模。
该技术在早期(转移前)乳腺癌环境中在经济上和临床上都是可行的。
I-SPY 2 TRIAL 的成像负责人(PI:Nola Hylton),这是一项旨在识别新疗法的临床试验
对于乳腺癌,我们处于独特的地位,可以集成和测试 FDG-dbPET 作为早期治疗的性能
作为学术-工业合作伙伴,UCSF 和 OncoVision 将共同努力
开发一种用户友好且经济高效的 dbPET 技术,可轻松应用于临床
在具体目标 1 中,我们将开发软件功能以实现标准化。
dbPET 图像配准和量化,以准确量化治疗的纵向变化。
具体目标 2,我们将获取 I-SPY 2 患者子集治疗前和治疗后 FDG-dbPET 图像
并临床评估肿瘤代谢指标(即优化的标准化摄取值,SUV)是否来自
dbPET 可以作为病理完全缓解的早期预测因子——相比或组合
我们将测试 DCE-MRI 的功能性肿瘤体积 (FTV) 指标的生物标志物性能。
我们还将探讨使用逻辑回归预测模型的 dbPET SUV 和组合 SUV+FTV。
将 dbPET 和 DCE-MRI 放射组学特征与乳腺癌生物标志物关联起来,以便识别
此外,我们的前瞻性研究的 dbPET 数据将用于
评估特定目标 1 中开发的软件功能。我们期望成功完成此任务
AIP 项目旨在在常规乳腺癌管理中使用 MAMMI dbPET 并生产一套
与肿瘤生物学相关的成像生物标志物及其对治疗的反应的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nola M. Hylton-Watson其他文献
Nola M. Hylton-Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nola M. Hylton-Watson', 18)}}的其他基金
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10478050 - 财政年份:2018
- 资助金额:
$ 58.01万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
9769672 - 财政年份:2018
- 资助金额:
$ 58.01万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
10241938 - 财政年份:2018
- 资助金额:
$ 58.01万 - 项目类别:
Project 2: Non-invasive imaging metrics to optimize early treatment switching decisions and prognostic modeling of long-term outcomes
项目 2:非侵入性成像指标,用于优化早期治疗转换决策和长期结果的预后建模
- 批准号:
10628610 - 财政年份:2017
- 资助金额:
$ 58.01万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10013138 - 财政年份:2017
- 资助金额:
$ 58.01万 - 项目类别:
Project 02 - Non-invasive imaging metrics for determining non-response
项目 02 - 用于确定无反应的非侵入性成像指标
- 批准号:
10249155 - 财政年份:2017
- 资助金额:
$ 58.01万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8719738 - 财政年份:2011
- 资助金额:
$ 58.01万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8537122 - 财政年份:2011
- 资助金额:
$ 58.01万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8108104 - 财政年份:2011
- 资助金额:
$ 58.01万 - 项目类别:
Quantitative Imaging for Assessing Breast Cancer Response to Treatment
用于评估乳腺癌治疗反应的定量成像
- 批准号:
8338834 - 财政年份:2011
- 资助金额:
$ 58.01万 - 项目类别:
相似海外基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 58.01万 - 项目类别:
Advancing Methods for MR-guided Focused Ultrasound Hyperthermia for Head and Neck Cancer
推进 MR 引导聚焦超声热疗治疗头颈癌的方法
- 批准号:
10738459 - 财政年份:2023
- 资助金额:
$ 58.01万 - 项目类别:
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
- 批准号:
10449579 - 财政年份:2022
- 资助金额:
$ 58.01万 - 项目类别:
Provider and Patient-generated Remote Oro-Dental Health Electronic Data Capture for Algorithmic Longitudinal Evaluation and Risk-Assessment (PROHEALER)
提供者和患者生成的远程口腔牙科健康电子数据采集,用于算法纵向评估和风险评估 (PROHEALER)
- 批准号:
10655430 - 财政年份:2022
- 资助金额:
$ 58.01万 - 项目类别:
Home Blood Pressure in Hemodialysis (HOME-BP)
血液透析中的家庭血压 (HOME-BP)
- 批准号:
10395924 - 财政年份:2021
- 资助金额:
$ 58.01万 - 项目类别: