Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers

用于癌症放射治疗计划的自动器官分割工具

基本信息

  • 批准号:
    10081752
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT As early detection and better treatment have increased cancer patient survival rates, the importance of protecting normal organs during radiation treatment is drawing more attention, which is critical in reducing long term toxicity of cancers. To avoid excessively high radiation doses to organs-at-risk (OARs), OARs need to be correctly segmented from simulation computed tomography (CT) scans during radiation treatment planning to get an accurate dose distribution. Despite tremendous effort in developing semi- or fully-automatic segmentation solutions, current automated segmentation software, mostly using the atlas-based methods, has not yet reached the level of accuracy and robustness required for clinical usage. Therefore, in current practice, significant manual efforts are still required in the OAR segmentation process. Manual contouring suffers from inter- and intra-observer variability, as well as institutional variability where different sites adopt distinct contouring atlases and labeling criteria, thus leading to inaccuracy and variability in OAR segmentation. When OARs are very close to the treatment target, segmentation errors as small as a few millimeters can have a statistically significant impact on dosimetry distribution and outcome. In addition, it is also costly and time consuming as it can take 1-2 hours of a clinicians’ time to segment major thoracic organs due to the large number of axial slices required. In summary, an accurate and fast process for segmenting OARs in treatment planning using CT scans is needed for improving patient outcomes and reducing the cost of radiation therapy of cancers. In recent years, the rapid development of deep learning methods has revolutionized many computer-vision areas and the adoption of deep learning in medical applications has shown great success. Based on a deep-learning-based algorithm we developed that achieved better-than-human performance and ranked 1st in 2017 American Association of Physicist in Medicine Thoracic Auto-segmentation Challenge, an automatic OAR segmentation product will be developed in this project with the three aims: 1) further improve the performance and robustness of OAR segmentation algorithms, focusing on addressing the heterogeneity issue of different clinical environments; 2) further enrich the functionalities and enhance usability of the cloud- based software product; and 3) perform clinical validation study on the algorithm performance and software usability at collaborating sites. With this product, the segmentation accuracy can be improved, leading to more robust treatment plans in protecting normal organs and improved long term patient outcome. The time and cost of radiation treatment planning can be greatly reduced, contributing to a more affordable cancer treatment and reduced healthcare burden.
抽象的 由于早期检测和更好的治疗提高了癌症患者的生存率,因此 放射治疗期间保护正常器官越来越受到关注,这对于减少长时间的治疗至关重要 为了避免危及器官 (OAR) 受到过高的辐射剂量,需要对 OAR 进行长期治疗。 在放射治疗计划期间从模拟计算机断层扫描 (CT) 扫描中正确分割 尽管在开发半自动或全自动方面付出了巨大的努力,但仍能获得准确的剂量分布。 分割解决方案,目前的自动分割软件,大多使用基于图集的方法,已经 尚未达到临床使用所需的准确性和鲁棒性水平,因此,在目前的实践中, OAR 分割过程中仍然需要大量的手动工作。 观察者之间和观察者内部的变异性,以及不同地点采用不同方法的制度变异性 轮廓图集和标记标准,从而导致 OAR 分割的不准确性和可变性。 OAR 非常接近治疗目标,小至几毫米的分割误差都会产生 对剂量测定分布和结果有统计上的显着影响此外,它也很昂贵和时间。 由于胸腔器官体积较大,分割主要胸腔器官可能需要 1-2 个小时的时间。 总之,在治疗中分割 OAR 的准确而快速的过程。 需要使用 CT 扫描进行规划,以改善患者的治疗效果并降低放射治疗的成本 近年来,深度学习方法的快速发展已经彻底改变了许多癌症。 计算机视觉领域以及深度学习在医疗应用中的采用已经取得了巨大的成功。 基于我们开发的基于深度学习的算法,该算法实现了优于人类的性能,并且 2017年美国医学物理学家协会胸部自动分割挑战赛排名第一 本项目将开发自动OAR分割产品,其三个目标是:1)进一步改进 OAR 分割算法的性能和鲁棒性,重点解决异构性 2)进一步丰富云的功能并增强可用性- 基于软件产品;3)对算法性能和软件进行临床验证研究 通过该产品,可以提高分割准确性,从而带来更多结果。 保护正常器官并改善患者长期治疗效果的强有力的治疗计划。 放射治疗计划的数量可以大大减少,从而有助于提供更实惠的癌症治疗 减轻医疗负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xue Feng其他文献

PTPN22-1123G > C polymorphism is associated with susceptibility to primary immune thrombocytopenia in Chinese population
PTPN22-1123G
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ge Jing;Li Huiyuan;Gu Dongsheng;Du Weiting;Xue Feng;Sui Tao;Xu Jianhui;Yang Renchi
  • 通讯作者:
    Yang Renchi
Abnormal lipid rafts related ganglioside expression and signaling in T lymphocytes in immune thrombocytopenia patients.
免疫性血小板减少症患者 T 淋巴细胞中脂筏异常相关神经节苷脂表达和信号传导。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Fu Rongfeng;Liu Xiaofan;Xue Feng;Yang Renchi
  • 通讯作者:
    Yang Renchi
Reduced MIR130A is involved in primary immune thrombocytopenia via targeting TGFB1 and IL18.
减少的 MIR130A 通过靶向 TGFB1 和 IL18 参与原发性免疫性血小板减少症。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Ge Jing;Xue Feng;Zhou Zeping;Yang Renchi
  • 通讯作者:
    Yang Renchi
Reduced expression of MIR409-3p in primary immune thrombocytopenia
原发性免疫性血小板减少症中 MIR409-3p 表达降低
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Yang Renchi;Zhao Haifeng;Xue Feng;Zhang Xian;Zhang Donglei;Ge Jing;Yang Yanhui;Xuan Min;Fu Rongfeng
  • 通讯作者:
    Fu Rongfeng

Xue Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xue Feng', 18)}}的其他基金

Improved Diagnosis of Shunt Malfunction with Automatic Quantification of Ventricular Space
通过心室空间自动量化改进分流故障的诊断
  • 批准号:
    10384590
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers
用于癌症放射治疗计划的自动器官分割工具
  • 批准号:
    10518374
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Automatic Organ Segmentation Tool for Radiation Treatment Planning of Cancers
用于癌症放射治疗计划的自动器官分割工具
  • 批准号:
    10221655
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Core C: Spatial Multiomics Core
核心 C:空间多组学核心
  • 批准号:
    10555895
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
  • 批准号:
    10667938
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage
用于货架组织制造和储存的冷冻生物打印
  • 批准号:
    10927669
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了