Powering whole genome sequence-based genetic discovery for common human diseases
为常见人类疾病提供基于全基因组序列的基因发现
基本信息
- 批准号:10085285
- 负责人:
- 金额:$ 88.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AllelesAutomobile DrivingBase SequenceBiologicalCodeCommunitiesComplexComputational BiologyComputer softwareComputing MethodologiesDataData SetDatabasesDiseaseElementsEnsureEtiologyFoundationsGenesGeneticGenetic ModelsGenetic StructuresGenetic VariationGenomicsGoalsGroupingHeritabilityHumanHuman GeneticsIndividualKnowledgeLearningLearning ModuleMeasuresMediationMendelian disorderMethodsModelingNational Human Genome Research InstituteNon-Insulin-Dependent Diabetes MellitusPathway interactionsPatient CarePhenotypePlayPolygenic TraitsPopulation ControlRandomizedRegulatory ElementResearch PersonnelResourcesRiskRoleSamplingSchemeSchizophreniaSignal TransductionStatistical MethodsTestingTimeTo specifyTranslatingUntranslated RNAVariantWeightanalytical methodanalytical toolbaseburden of illnessdata resourcedata sharingdisease phenotypedisorder preventionepigenomicsgenetic analysisgenetic architecturegenetic associationgenome sequencinghuman diseaseimprovedindividualized preventioninsightnovelnovel strategiesopen sourceoutcome forecastphenotypic datapleiotropismpopulation stratificationpower analysisprecision medicineprogramsrare variantscale uptooltraituser-friendlywhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
The coming NHGRI Centers for Common Disease Genomics (CCDG) and Centers for Mendelian Genomics
(CMG) plan to generate whole genome sequencing (WGS) data on over 200,000 individuals. WGS will provide
comprehensive and complete genetic data across coding and non-coding variation, presenting an
unprecedented opportunity for discovery in the genetic analysis of human diseases. However, a lack of
powerful analytic tools that fully realize the potential of these data has emerged as a bottleneck for effectively
translating rich information contained in these massive WGS data into meaningful insights about human
diseases. There is a pressing need to develop powerful and robust analytic methods for WGS that can
accelerate genetic discoveries. To meet this need, we have assembled an interdisciplinary team of
computational biologists, geneticists, and statisticians. Building on our extensive track record in sequencing
studies, statistical genetics, functional analysis and computational biology, we will power the next round of
genetic discoveries by (1) building a massive WGS control sample and developing the methods for
incorporating these controls in studies of complex and Mendelian diseases; (2) creating more powerful
statistical methods for rare variant analysis through the incorporation of functional and regulatory information
and advanced statistical tools; (3) establishing methods to analyze multiple phenotypes to boost the power for
association and understand how different phenotypes relate genetically. These methods will enhance our
ability to identify novel associations across a wide range of genetic architectures, from Mendelian diseases
driven by a strong acting allele to complex polygenic traits. Novel associations promise to lay the foundation for
gaining new insight into the biological mechanisms driving disease and be the bedrock for precision prevention
and medicine strategies. We will collaborate with the investigators of the Genome Sequencing Program, and
will share the developed data resources, tools and methods with the community through user-friendly open
source software and educational modules.
项目概要/摘要
即将成立的 NHGRI 常见疾病基因组学中心 (CCDG) 和孟德尔基因组学中心
(CMG) 计划生成超过 200,000 人的全基因组测序 (WGS) 数据。 WGS 将提供
跨编码和非编码变异的全面且完整的遗传数据,呈现
人类疾病遗传分析中发现的前所未有的机会。然而,缺乏
充分发挥这些数据潜力的强大分析工具已成为有效利用这些数据的瓶颈。
将这些海量 WGS 数据中包含的丰富信息转化为关于人类的有意义的见解
疾病。迫切需要开发强大而稳健的 WGS 分析方法
加速基因发现。为了满足这一需求,我们组建了一支跨学科团队
计算生物学家、遗传学家和统计学家。以我们在测序方面的丰富记录为基础
研究、统计遗传学、功能分析和计算生物学,我们将为下一轮提供动力
通过 (1) 构建大量 WGS 对照样本并开发方法来发现基因
将这些控制纳入复杂疾病和孟德尔疾病的研究中; (二)创造更强大的力量
通过结合功能和监管信息进行罕见变异分析的统计方法
和先进的统计工具; (3) 建立多种表型分析方法,增强分析能力
关联并了解不同表型如何在遗传上相关。这些方法将增强我们的
能够从孟德尔疾病中识别各种遗传结构中的新关联
由强作用等位基因驱动,形成复杂的多基因性状。新颖的协会有望奠定基础
获得对驱动疾病的生物机制的新见解,并成为精准预防的基石
和医学策略。我们将与基因组测序计划的研究人员合作,并且
将通过用户友好的开放方式与社区分享开发的数据资源、工具和方法
源软件和教育模块。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIHONG LIN其他文献
XIHONG LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIHONG LIN', 18)}}的其他基金
Statistical Methods for Integrative Analysis of Large-Scale Multi-Ethnic Whole Genome Sequencing Studies and Biobanks of Common Diseases
大规模多民族全基因组测序研究和常见疾病生物样本库综合分析的统计方法
- 批准号:
10622567 - 财政年份:2022
- 资助金额:
$ 88.48万 - 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases- Extended 2021-2022.
为常见人类疾病提供基于全基因组序列的基因发现 - 延期 2021-2022 年。
- 批准号:
10355760 - 财政年份:2021
- 资助金额:
$ 88.48万 - 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases
为常见人类疾病提供基于全基因组序列的基因发现
- 批准号:
10168752 - 财政年份:2020
- 资助金额:
$ 88.48万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
10676866 - 财政年份:2015
- 资助金额:
$ 88.48万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
10221623 - 财政年份:2015
- 资助金额:
$ 88.48万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
8955524 - 财政年份:2015
- 资助金额:
$ 88.48万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
9980301 - 财政年份:2015
- 资助金额:
$ 88.48万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
9120850 - 财政年份:2015
- 资助金额:
$ 88.48万 - 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
- 批准号:
9321418 - 财政年份:2015
- 资助金额:
$ 88.48万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Oncogenic Kras drives stromal adipogenesis to promote colorectal cancer (CRC) progression
致癌 Kras 驱动基质脂肪生成,促进结直肠癌 (CRC) 进展
- 批准号:
10528562 - 财政年份:2022
- 资助金额:
$ 88.48万 - 项目类别:
Mechanisms of genomic instability, tumor initiation and progression following the disruption of the RTF2-RNase H2 axis
RTF2-RNase H2 轴破坏后基因组不稳定、肿瘤发生和进展的机制
- 批准号:
10537173 - 财政年份:2022
- 资助金额:
$ 88.48万 - 项目类别:
Origins of DNA damage driving pathology in human neurodegeneration
DNA损伤驱动人类神经变性病理学的起源
- 批准号:
10569616 - 财政年份:2022
- 资助金额:
$ 88.48万 - 项目类别:
Elucidating Oncogenic Mechanisms Underlying Wilms Tumor Using Kidney Organoids
使用肾脏类器官阐明肾母细胞瘤的致癌机制
- 批准号:
10543184 - 财政年份:2021
- 资助金额:
$ 88.48万 - 项目类别:
Targeting the PMP22 Protein to Develop Leads Against Charcot-Marie-Tooth Disease
靶向 PMP22 蛋白开发抗腓骨肌萎缩症的先导药物
- 批准号:
10331038 - 财政年份:2021
- 资助金额:
$ 88.48万 - 项目类别: