Functional Genomics of Stress Defense in Yeast
酵母应激防御的功能基因组学
基本信息
- 批准号:8063659
- 负责人:
- 金额:$ 30.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAnimal ModelAreaBiochemicalBiochemical GeneticsBiochemistryBiologyCell SurvivalCellsCellular StressComplexComputational BiologyData SetDefense MechanismsDependenceDiseaseDissectionDoseEukaryotaFosteringFoundationsFungal GenomeGene ExpressionGenerationsGenesGeneticGenomeGenomicsGoalsGrowthHealthHomeostasisHumanMalignant NeoplasmsMapsMediatingMedicineMemoryModelingMolecular ProfilingMonitorMutationMyocardial InfarctionOperative Surgical ProceduresOrganismPathway AnalysisPhasePhenotypePlayProcessProteomicsRegulationResistanceRoleScreening procedureSignal TransductionStressStrokeSystemTechniquesToxinTraumaUntranslated RegionsYeastsacute stressbasebiological adaptation to stresschemotherapydeletion librarydisorder preventionfunctional genomicsgene functionhigh throughput screeningmemory acquisitionmutantnovelpreventpromoterresearch studyresponsesuccesstranscription factor
项目摘要
DESCRIPTION (provided by applicant): All organisms must protect their internal system from cellular stress. Whether stress arises from external toxins or mutation and disease, cells must sensitively monitor stress signals and mount the appropriate responses to maintain internal homeostasis. Despite the importance of stress defense, much remains unknown about the mechanisms eukaryotes use to survive stressful situations. Functional genomics has uncovered functions for many genes in various genomes, largely by characterizing gene function under standard conditions. However, a substantial fraction of genes remains uncharacterized, and many of these are likely to be involved in stress defense and thus have not been uncovered through traditional studies. This proposal will use high-throughput functional genomics, genomic expression analysis, computational biology, and techniques in genetics and biochemistry to identify and characterize genes involved in stress defense in yeast. Aim 1 will exploit two new phenotypes related to stress defense to uncover novel genes involved in eukaryotic stress survival. The first is a phenomenon known as `acquired stress resistance', in which cells exposed to a small dose of one stress become resistant to an otherwise lethal dose of a different stress. The second is a phenomenon in which cells retain a `memory' of stress resistance that persists for many generations after mild-stress treatment, even after the mild stress has been removed. We will use these phenotypes in high-throughput selections to identify yeast deletion mutants that cannot acquire or retain resistance to severe stress after mild-stress treatment. Identified genes, as well as known regulators of acquired stress resistance, will be characterized to define their precise roles in these phenomena. Cells respond to stress with a multi-facetted response. This response, including reorganization of genomic expression, is coordinated by a complex signaling network that responds to stress. Aim 2 will elucidate the intricate stress-activated signaling network in yeast that orchestrates genomic expression responses to stress. Regulators of stress-dependent genes will be identified by screening the yeast-deletion library for mutants unable to induce expression upon stress treatments. Identified regulators and various known network components will be organized into a putative signaling network, using numerous computational approaches. This network will be subsequently dissected and refined based on genomic, genetic, and biochemical studies. These experiments will help to elucidate the complex stress-activated signaling network in yeast, which serves as an excellent model for such networks in humans and other organisms, while developing computational approaches that are likely to advance this area of biology. As many of these responses are conserved in humans, these results will foster stress minimization and disease prevention in human medicine.
Project Relevance: Many stress-defense mechanisms used by yeast are conserved in humans, and therefore the results of this proposal will provide a strong foundation for understanding, and eventually modulating, stress resistance for human health. These results will have broad application, from minimizing debilitating side effects of chemotherapy, to reducing trauma inflicted by invasive surgery, heart attacks and strokes, to preventing cancer. Furthermore, understanding how yeast sense and respond to stress is an excellent model for how human cells respond to analogous cellular stresses.
描述(由申请人提供):所有生物必须保护其内部系统免受细胞压力。无论是外部毒素还是突变和疾病引起的压力,细胞都必须敏感地监测应力信号并安装适当的反应以维持内部稳态。尽管有压力防御的重要性,但对真核生物在压力下的情况下使用的机制仍然未知。功能基因组学已经发现了许多基因中许多基因的功能,主要是通过在标准条件下表征基因功能。但是,很大一部分基因仍然没有表征,其中许多可能参与压力防御,因此没有通过传统研究发现。该建议将使用高通量功能基因组学,基因组表达分析,计算生物学以及遗传学和生物化学中的技术来识别和表征与酵母中应力防御有关的基因。 AIM 1将利用与应力防御有关的两种新表型,以发现与真核应激存活有关的新基因。第一个是一种称为“获得的应激性抗性”的现象,其中暴露于一小剂量的一个应力的细胞对原本具有不同应力的致命剂量具有抗性。第二种是一种现象,其中细胞保留了压力抗性的“记忆”,即使在轻度应激后,在轻度压力治疗后仍存在许多代人。我们将在高通量选择中使用这些表型来识别在轻度压力治疗后无法获得或保持对严重压力的抗性的酵母缺失突变体。鉴定的基因以及已知的获得应力抗性的调节因子将被特征在于定义其在这些现象中的精确作用。细胞以多面反应来应对压力。这种反应,包括基因组表达的重组,由对应力做出反应的复杂信号网络协调。 AIM 2将阐明酵母中复杂的应激激活信号网络,该信号网络策划了对压力的基因组表达反应。通过筛选酵母缺失文库的突变体无法诱导压力治疗时表达的突变体,将确定依赖压力依赖基因的调节因子。已确定的调节器和各种已知网络组件将使用多种计算方法组织为推定的信号网络。随后将根据基因组,遗传和生化研究对该网络进行解剖和完善。这些实验将有助于阐明酵母中复杂的应激激活信号网络,该网络是人类和其他生物中此类网络的出色模型,同时开发了可能推动生物学领域的计算方法。由于这些反应中的许多人在人类中都是保守的,因此这些结果将促进应激最小化和预防人类医学的疾病。
项目相关性:酵母菌使用的许多应力防御机制在人类中是保守的,因此,该提案的结果将为理解并最终调节人类健康的压力抗性提供了坚实的基础。这些结果将具有广泛的应用,从最大程度地减少化学疗法的副作用到减少侵入性手术,心脏病发作和中风造成的创伤,再到预防癌症。此外,了解酵母如何感知和对压力的反应是人类细胞如何应对类似细胞应激的绝佳模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AUDREY P GASCH其他文献
AUDREY P GASCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AUDREY P GASCH', 18)}}的其他基金
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别:
Dissecting the influence of genetic background on aneuploidy tolerance in the model eukaryote Saccharomyces cerevisiae
剖析遗传背景对模型真核生物酿酒酵母非整倍体耐受性的影响
- 批准号:
10667621 - 财政年份:2022
- 资助金额:
$ 30.64万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
9923577 - 财政年份:2018
- 资助金额:
$ 30.64万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
10403944 - 财政年份:2018
- 资助金额:
$ 30.64万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
10524170 - 财政年份:2018
- 资助金额:
$ 30.64万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
10096189 - 财政年份:2018
- 资助金额:
$ 30.64万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别:
Impact of mammalian target of rapamycin inhibitor therapy on aging-related outcomes
雷帕霉素抑制剂治疗哺乳动物靶标对衰老相关结果的影响
- 批准号:
10564036 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别:
Mechanisms underlying the reduction in alcohol intake in response to low intensity targeting of the reward circuit
奖励回路低强度目标导致酒精摄入量减少的机制
- 批准号:
10733248 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别:
Development of a Novel Bone Adhesive Scaffold to Accelerate Bone Regeneration and Improve Ridge Height Maintenance for the Treatment of Patients with Residual Ridge Resorption
开发新型骨粘合剂支架以加速骨再生并改善牙槽嵴高度维持以治疗残留牙槽嵴吸收的患者
- 批准号:
10603678 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别:
Gut-brain axis in Alzheimer's disease: translational 7T MRI markers and underlying mechanisms
阿尔茨海默病中的肠脑轴:转化 7T MRI 标记物和潜在机制
- 批准号:
10901013 - 财政年份:2023
- 资助金额:
$ 30.64万 - 项目类别: