Nuclear Organization and Function
核组织和功能
基本信息
- 批准号:10083368
- 负责人:
- 金额:$ 43.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectBiological ModelsCell Differentiation processCell NucleusCellsCellular biologyChromatinChromatin FiberComplexComputational BiologyDataDimensionsDiseaseDrosophila genusEnhancersEnvironmentEpigenetic ProcessEukaryotaFrequenciesGene ExpressionGene Expression RegulationGeneticGenetic DiseasesGenetic MaterialsGenetic TranscriptionGenomeHi-CHomeostasisHuman GeneticsKnowledgeLogicMachine LearningMalignant NeoplasmsMammalsNuclearPancreasProteinsResolutionRoleSiteSomatic CellTestingThree-dimensional analysisTissuesTranscription ProcessTranscriptional RegulationVertebratesWorkbasecohesincomputerized toolsepigenomicsexperimental studyhuman diseasehuman embryonic stem cellinterdisciplinary approachmammalian genomenovelpromoterprotein complexscaffoldstem cell differentiationstem cell therapy
项目摘要
PROJECT SUMMARY. Proper regulation of gene expression is essential for cell differentiation and
homeostasis. Most of our understanding of the mechanisms that control the transcription process comes from
studies of the one-dimensional genome i.e. the 10 nm chromatin fiber. However, the genome is folded in the
three-dimensional (3D) nuclear space, and the relationship between this organization and gene expression is
poorly understood. Using Drosophila as a model system, where it is feasible to obtain 250 bp resolution Hi-C
data, we have found that the genome is folded into only one type of domain, which we call compartmental
domains. These domains precisely correlate with the transcriptional state of their sequences. Compartmental
domains are also found in other lower eukaryotes. Based on this, we propose that compartmental domains
represent an evolutionarily conserved principle of genome 3D organization. Drosophila and lower eukaryotes
either lack CTCF or this protein is unable to stop cohesin extrusion. However, CTCF can interfere with the
progression of cohesin extrusion in vertebrates, which in turn affects other types of interactions in the genome.
Here we suggest extending concepts learned from the analysis of 3D organization in Drosophila to mammals
by proposing an ambitious and substantive multi-disciplinary approach combining genetics, epigenomics,
computational biology, and differentiation of human embryonic stem cells (hESC) into disease-relevant tissues.
The hypothesis underlying the proposed experiments is based on the idea that, rather than the prevalent view
of large compartments containing smaller TADs, the mammalian genome is organized by conserved principles
into relatively small compartmental domains. Cohesin extrusion operates on top of the compartmental domain
scaffold and affects its organization. To test this novel hypothesis, we will deplete specific proteins present in
complexes required for various aspects of the transcription process. We will also deplete protein complexes
responsible for H3K27me3- and H3K9me3-dependent silencing. We will then use Micro-C XL to obtain very
high-resolution interaction data and examine effects of protein depletion on the formation of self-interacting
domains and in the interactions between these domains. These effects will be examined in the presence and
absence of cohesin in order to understand the contribution of loop extrusion to enhancer-promoter interaction
frequency. We will examine the predictability of 3D genome organization from one-dimensional epigenetic
information using machine learning computational tools. We will study the logic of CTCF loop formation by
analyzing the local chromatin environment around CTCF sites able or unable to form loops of different
strengths using a new computational tool we have developed. Principles learned from these experiments will
be tested by analyzing changes in 3D organization and their relationship to gene expression during the
differentiation of hESCs into pancreatic cells. Results from this work will fill critical gaps in our understanding of
the relationship between 3D chromatin organization and transcription, and its possible role in human disease.
项目摘要。基因表达的正确调控对于细胞分化和
体内平衡。我们对控制转录过程的机制的大部分理解来自
一维基因组(即 10 nm 染色质纤维)的研究。然而,基因组折叠在
三维(3D)核空间,该组织与基因表达之间的关系为
不太了解。使用果蝇作为模型系统,可以获得 250 bp 分辨率的 Hi-C
数据中,我们发现基因组仅折叠成一种类型的结构域,我们称之为区室
域。这些结构域与其序列的转录状态精确相关。隔室式
结构域也存在于其他低等真核生物中。在此基础上,我们提出分区域
代表基因组 3D 组织的进化保守原则。果蝇和低等真核生物
要么缺乏 CTCF,要么该蛋白无法阻止粘连蛋白挤出。然而,CTCF 可能会干扰
脊椎动物中粘连蛋白挤出的进展,进而影响基因组中其他类型的相互作用。
在这里,我们建议将从果蝇 3D 组织分析中学到的概念扩展到哺乳动物
通过提出一种雄心勃勃且实质性的多学科方法,结合遗传学、表观基因组学、
计算生物学,以及人类胚胎干细胞(hESC)分化为疾病相关组织。
所提出的实验的假设是基于这样的想法,而不是普遍的观点
哺乳动物基因组由包含较小 TAD 的大区室组成,按照保守原则进行组织
分成相对较小的分区域。粘连蛋白挤出在区室域顶部进行
支架并影响其组织。为了测试这个新假设,我们将耗尽存在于
转录过程各个方面所需的复合物。我们还将耗尽蛋白质复合物
负责 H3K27me3 和 H3K9me3 依赖性沉默。然后我们将使用 Micro-C XL 来获得非常
高分辨率相互作用数据并检查蛋白质消耗对自相互作用形成的影响
领域以及这些领域之间的相互作用。这些影响将在存在和
缺乏粘连蛋白,以了解环挤出对增强子-启动子相互作用的贡献
频率。我们将从一维表观遗传研究 3D 基因组组织的可预测性
使用机器学习计算工具的信息。我们将通过以下方式研究 CTCF 循环形成的逻辑
分析 CTCF 位点周围能够或不能形成不同环的局部染色质环境
使用我们开发的新计算工具的优势。从这些实验中学到的原理将
通过分析 3D 组织的变化及其与基因表达的关系来进行测试
hESC 分化为胰腺细胞。这项工作的结果将填补我们理解的关键空白
3D 染色质组织与转录之间的关系及其在人类疾病中的可能作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor G. Corces其他文献
Victor G. Corces的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor G. Corces', 18)}}的其他基金
Functional validation of sequence variants affecting neurodevelopmental and craniofacial phenotypes
影响神经发育和颅面表型的序列变异的功能验证
- 批准号:
10701310 - 财政年份:2022
- 资助金额:
$ 43.11万 - 项目类别:
Mechanisms of transgenerational epigenetic inheritance
跨代表观遗传机制
- 批准号:
10586800 - 财政年份:2017
- 资助金额:
$ 43.11万 - 项目类别:
Mechanisms of transgenerational epigenetic inheritance
跨代表观遗传机制
- 批准号:
9899105 - 财政年份:2017
- 资助金额:
$ 43.11万 - 项目类别:
Nuclear organization in stem and differentiated cells
干细胞和分化细胞的核组织
- 批准号:
7820328 - 财政年份:2009
- 资助金额:
$ 43.11万 - 项目类别:
Nuclear organization in stem and differentiated cells
干细胞和分化细胞的核组织
- 批准号:
7820328 - 财政年份:2009
- 资助金额:
$ 43.11万 - 项目类别:
Nuclear organization in stem and differentiated cells
干细胞和分化细胞的核组织
- 批准号:
7939808 - 财政年份:2009
- 资助金额:
$ 43.11万 - 项目类别:
MOLECULAR BASIS OF RETROTRANSPOSON MOBILIZATION
逆转录转座子动员的分子基础
- 批准号:
6180976 - 财政年份:1997
- 资助金额:
$ 43.11万 - 项目类别:
相似国自然基金
气候变化影响下生物防治入侵物种的动力学模型研究
- 批准号:12301635
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于3D生物打印仿生NAFLD模型探究细胞外基质硬度对脂质沉积的影响及机制
- 批准号:82300754
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冻融盐渍化土壤多组分溶质迁移对微生物呼吸的影响机理及模型
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
扩散限制对土壤微生物多样性的影响及零模型算法的评估与优化
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于代谢网络模型研究代谢物交换对共生微生物比例的影响
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 43.11万 - 项目类别:
Mechanistic modeling of the innate immune responses of the human lung to understand the inter-individual heterogeneity of COVID-19 pneumonia
人肺先天免疫反应的机制模型,以了解 COVID-19 肺炎的个体间异质性
- 批准号:
10728396 - 财政年份:2023
- 资助金额:
$ 43.11万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 43.11万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 43.11万 - 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 43.11万 - 项目类别: